Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 16, 2017

Nanocelluloses obtained by ammonium persulfate (APS) oxidation of bleached kraft pulp (BKP) and bacterial cellulose (BC) and their application in biocomposite films together with chitosan

  • Linda Vecbiskena EMAIL logo and Linda Rozenberga
From the journal Holzforschung

Abstract

Bleached birch kraft pulp (BKP, Södra Cell AB, Sweden) and unmodified bacterial cellulose (BC) pellicles, biosynthesized by the bacterium Komagataeibacter rhaeticus, were converted to cellulose nanofibers via ammonium persulfate (APS) oxidation. Fiber dimensions were investigated in an atomic force microscope, and the crystallite size was calculated by Rietveld analysis. Saos-2 osteosarcoma cell line served to assess the in vitro cytocompatibility of the biocomposite films. Results showed that individual cellulose nanofibers with an average width of 80±15 nm and a length between 600 and 1200 nm are formed by APS oxidation. The obtained BC nanofibers can be promising constituents in nanocellulose films and in chitosan-matrix films with improved physical-mechanical and biological properties. Good cellular biocompatibility was found for chitosan/oxidized cellulose films; the viability of Saos-2 osteosarcoma cells was higher on chitosan/oxidized BC films compared to chitosan/oxidized BKP films.

Acknowledgments

Financial support for this research from 6.VPP “ResProd” project Nr.3. “Biomaterials and products from forest resources with versatile applicability” is greatly appreciated. The authors are grateful to Madara Saka, Institute of Microbiology and Biotechnology, University of Latvia, for production of bacterial cellulose, and Laura Vikele, State Education Development Agency, Latvia, for unselfish voluntary assistance in this study. Linda Vecbiskena would like to express her appreciation to COST Action FP1205 Grant Holder for financial support to realize a Short-Term Scientific Mission at the Department of Chemistry, Materials and Chemical Engineering “G.Natta”, Milan, Italy (COST-STSM-FP1205-26877). Linda Vecbiskena is thankful to Lina Altomare, Luigi de Nardo and Gabriele Candiani, Department of Chemistry, Materials and Chemical Engineering “G.Natta”, Milan, Italy, for the cooperation to perform the cell culture work.

References

Abyshev, A.Z., Agaev, E.M., Guseinov, A.B. (2007) Studies of the chemical composition of birch bark extracts (Cortex betula) from the Betulaceae family. Pharm. Chem. J. 41:419–423.10.1007/s11094-007-0091-5Search in Google Scholar

Bergmann, C.P., Stumpf, A. Dental Ceramics – Microstructure, Properties and Degradation. Springer-Verlag, Heidelberg, Berlin, 2013.10.1007/978-3-642-38224-6_7Search in Google Scholar

Barrere, F., Van Blitterswijk, C.A., De Groot, K. (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomedicine 1:317–332.Search in Google Scholar

Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E. (2011) Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36:981–1014.10.1016/j.progpolymsci.2011.02.001Search in Google Scholar

Du, C., Liu, M., Li, B., Li, H., Meng, Q., Zhan, H. (2016) Cellulose nanocrystals prepared by persulfate one-step oxidation of bleached bagasse pulp. BioResources 11:4017–4024.10.15376/biores.11.2.4017-4024Search in Google Scholar

Fernandes, S.C.M., Oliveira, L., Freire, C.S.R., Silvestre A.J.D., Pascoal Neto C., Gandini, A., Desbrieres, J. (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 11:2023–2029.10.1039/b919112gSearch in Google Scholar

Freire, C.S.R., Fernandes, S.C.M., Silvestre, A.J.D., Pascoal Neto, C. (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung 67:603–612.10.1515/hf-2012-0127Search in Google Scholar

George, J., Sabapathi, S.N. (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8:45–54.10.2147/NSA.S64386Search in Google Scholar PubMed PubMed Central

Goy, R.C., De Britto, D., Assis, O.B.G. (2009) A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia 19:241–247.10.1590/S0104-14282009000300013Search in Google Scholar

Gray, D. (2013) Nanocellulose: from nature to high performance tailored material. Holzforschung 67:353–353.10.1515/hf-2013-0027Search in Google Scholar

Hamman, J.H. (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 8:1305–1322.10.3390/md8041305Search in Google Scholar PubMed PubMed Central

Hu, C., Zhao, Y., Li, K., Zhu, J.Y., Gleisner, R. (2015) Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung 69:993–1000.10.1515/hf-2014-0219Search in Google Scholar

Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V., Tamura, H. (2010) Biomedical applications of chitin and chitosan based nanomaterials. Carbohydr. Polym. 82:227–232.10.1016/j.carbpol.2010.04.074Search in Google Scholar

Kim, S.H., Lee, C.M., Kafle, K. (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 30:2127–2124.10.1007/s11814-013-0162-0Search in Google Scholar

Kucinska-Lipka, J., Gubanska, I., Janik, H. (2015) Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym. Bull. 72:2399–2419.10.1007/s00289-015-1407-3Search in Google Scholar

Kumirska, J., Weinhold, M.X., Thöming, J., Stepnowski, P. (2011) Biomedical activity of chitin/chitosan based materials – influence of physicochemical properties apart from molecular weight and degree of n-acetylation. Polymers 3:1875–1901.10.3390/polym3041875Search in Google Scholar

Krkic, N., Lazic, V., Petrovic, L., Gvozdenovic, J., Pejic, D. (2012) Properties of chitosan-laminated collagen film. Food Technol. Biotechnol. 50:483–489.Search in Google Scholar

Lahiji, R.R., Xu, X., Reifenberger, R., Raman, A., Rudie, A., Moon, R.J. (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488.10.1021/la903111jSearch in Google Scholar PubMed

Laka, M., Chernyavskaya, S., Treimanis, A. (2011) Performance of biopolymer films with reinforcing cellulose-containing fillers from pine pulp and bark and birch sawdust. Holzforschung 65:639–642.10.1515/hf.2011.113Search in Google Scholar

Lee, K.Y., Aitomaki, Y., Berglund, L.A., Oksman, K., Bismarck, A. (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105:15–27.10.1016/j.compscitech.2014.08.032Search in Google Scholar

Leung, A.C., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, J.H. (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305.10.1002/smll.201001715Search in Google Scholar PubMed

Lin, N., Dufresne, A. (2014) Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59:302–325.10.1016/j.eurpolymj.2014.07.025Search in Google Scholar

Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., Hsu, S.H. (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr. Polym. 94:603–611.10.1016/j.carbpol.2013.01.076Search in Google Scholar PubMed

Lu, Y., Weng, L., Cao, X. (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol. Biosci. 5:1101–1107.10.1002/mabi.200500094Search in Google Scholar PubMed

Olteanu, C.E. (2007) Applications of functionalized chitosan. J. Scientific Study Research 8:227–256.Search in Google Scholar

Oun, A.A., Rhim, J.W. (2015) Preparation and characterization of sodium carboxymethylcellulose/cotton linter cellulose nanofibril composite films. Carbohydr. Polym. 127:101–109.10.1016/j.carbpol.2015.03.073Search in Google Scholar PubMed

Pereda, M., Ponce, A.G., Marcovich, N.E., Ruseckaite, R.A., Martucci, J.F. (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll. 25:1372–1381.10.1016/j.foodhyd.2011.01.001Search in Google Scholar

Phisalaphong, M., Jatupaiboon, N. (2008) Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr. Polym. 74:482–488.10.1016/j.carbpol.2008.04.004Search in Google Scholar

Pillai, C.K.S., Paul, W., Sharma, C.P. (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34:641–678.10.1016/j.progpolymsci.2009.04.001Search in Google Scholar

Poletto, M., Ornaghi Junior, H.L., Zattera, A.J. (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119.10.3390/ma7096105Search in Google Scholar PubMed PubMed Central

Reis, A.B., Yoshida, C.M.P., Reis, A.P.C., Franco, T.T. (2011) Application of chitosan emulsion as a coating on Kraft paper. Polym. Int. 60:963–969.10.1002/pi.3023Search in Google Scholar

Riva, R., Ragelle, H., Des Rieux, A., Duhem, N., Jerome, C., Preat, V. (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv. Polym. Sci. 244:19–44.10.1007/12_2011_137Search in Google Scholar

Rozenberga, L., Vikele, L., Vecbiskena, L., Sable, I., Laka, M., Grinfelds, U. (2016) Preparation of nanocellulose using ammonium persulfate and method’s comparison with other techniques. Key Eng. Mater. 674:21–25.10.4028/www.scientific.net/KEM.674.21Search in Google Scholar

Sutka, A., Sutka, A., Gaidukov, S., Timusk, M., Gravitis, J., Kukle, S. (2015) Enhanced stability of PVA electrospun fibers in water by adding cellulose nanocrystals. Holzforschung 69:737–743.10.1515/hf-2014-0277Search in Google Scholar

Taut, T., Kleeberg, R., Bergmann, J. (1998) The new Seifert Rietveld program BGMD and its application to quantitative phase analysis. Mater. Struct. 5:57–66.Search in Google Scholar

Thein-Han, W.W., Misra, R.D.K. (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 5:1182–1197.10.1016/j.actbio.2008.11.025Search in Google Scholar PubMed

Vecbiskena, L., Vikele, L., Rozenberga, L., Sable, I. (2016) Wood-based biocomposites: mechanical processing, physical and biological properties. Key Eng. Mater. 674:26–30.10.4028/www.scientific.net/KEM.674.26Search in Google Scholar

Wang, H., Zhang, X., Jiang, Z., Yu, Z., Yu, Y. (2016) Isolating nanocellulose fibrills from bamboo parenchymal cells with high intensity ultrasonication. Holzforschung 70:401–409.10.1515/hf-2015-0114Search in Google Scholar

Žepič, V., Fabjan, E., Kasunič, M., Korošec, R.C., Hančič, A., Oven, P., Perše, L.S., Poljanšek, I. (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68:657–667.10.1515/hf-2013-0132Search in Google Scholar

Zhang, J., Xia, W., Liu, P., Cheng, Q., Tahi, T., Gu, W., Li, B. (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar. Drugs 8:1962–1987.10.3390/md8071962Search in Google Scholar PubMed PubMed Central

Zhang, H., Jin, Y., Deng, Y., Wang, D., Zhao, Y. (2012) Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr. Res. 362:13–20.10.1016/j.carres.2012.09.011Search in Google Scholar PubMed

Zhang, D., Zhang, Q., Gao, X., Piao, G. (2013) A nanocellulose polypyrrole composite based on tunicate cellulose. Int. J. Polym. Sci. 2013:1–6.10.1155/2013/175609Search in Google Scholar

Zhang, K., Sun, P., Liu, H., Shang, S., Song, J., Wang, D. (2016a) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr. Polym. 138:237–243.10.1016/j.carbpol.2015.11.038Search in Google Scholar PubMed

Zhang, P., Chen, L., Zhang, Q., Hong, F.F. (2016b) Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressing. Front. Microbiol. 7:1–16.10.3389/fmicb.2016.00260Search in Google Scholar PubMed PubMed Central

Received: 2016-10-15
Accepted: 2017-4-4
Published Online: 2017-5-16
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2016-0187/html
Scroll to top button