Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 16, 2021

Compact ultra-wideband monopole antenna with tunable notch bandwidth/frequency ratio

  • Karunesh Srivastava , Gaurav Varshney EMAIL logo and Rajeev Singh
From the journal Frequenz

Abstract

A compact tunable notch band ultra-wideband (UWB) antenna is implemented. The band notch characteristics have been obtained by placing a square-shaped metallic loop in the upper ground plane connected via PIN diode. The obtained notched frequency bandwidth can be altered by changing the states of the PIN diode. UWB response with narrow-band notch operation is observed when PIN diode is in ON state. When the PIN diode is in OFF state, the bandwidth of the obtained band notch widens by suppressing the first higher-order resonance and thus a narrow dual-band response is obtained. Moreover, the ratio of the frequency of first higher-order to the fundamental mode in the pass-band can be tuned with the different values as 1.584 and 2.20 in the ON and OFF state of the PIN diode, respectively. Furthermore, the antenna structure offers a compact geometry for the operation with the UWB response with band notch characteristics.


Corresponding author: Gaurav Varshney, National Institute of Technology Patna, Patna800005,India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Report and Order in the Commission’s Rules Regarding Ultra Wideband Transmission Systems, Federal Communications Commission, 2002.Search in Google Scholar

[2] C. C. Chong, F. Watanabe, and H. Inamura, “Potential of UWB technology for the next generation wireless communications,” IEEE Int. Symp. Spread Spectr. Tech. Appl., pp. 422–429, 2006, https://doi.org/10.1109/ISSSTA.2006.311807.Search in Google Scholar

[3] T. K. Roshna, U. Deepak, V. R. Sajitha, and P. Mohanan, “Coplanar stripline-fed compact UWB antenna,” Electron. Lett., vol. 50, pp. 1181–1182, 2014, https://doi.org/10.1049/el.2014.1884.Search in Google Scholar

[4] R. Kumar and S. Gaikwad, “On the design of nano-arm fractal antenna for UWB wireless applications,” J Microwaves, Optoelectron Electromagn Appl, vol. 12, pp. 158–171, 2013, https://doi.org/10.1590/s2179-10742013000100013.Search in Google Scholar

[5] G. K. Pandey, H. S. Singh, P. K. Bharti, and M. K. Meshram, “Metamaterial-based UWB antenna,” Electron. Lett., vol. 50, pp. 1266–1268, 2014, https://doi.org/10.1049/el.2014.2366.Search in Google Scholar

[6] M. M. Islam, M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, “Compact metamaterial antenna for UWB applications,” Electron. Lett., vol. 51, pp. 1222–1224, 2015, https://doi.org/10.1049/el.2015.2131.Search in Google Scholar

[7] L. Guo, S. Wang, X. Chen, and C. G. Parini, “Study of compact antenna for UWB applications,” Electron. Lett., vol. 46, pp. 115–116, 2010, https://doi.org/10.1049/el.2010.2772.Search in Google Scholar

[8] M. J. Jeong, N. Hussain, H. U. Bong, et al.., “Ultrawideband microstrip patch antenna with quadruple band notch characteristic using negative permittivity unit cells,” Microw. Opt. Technol. Lett., vol. 62, pp. 816–824, 2020, https://doi.org/10.1002/mop.32078.Search in Google Scholar

[9] P. Kim and Y. Jeong, “A coupled line impedance transformer for high termination impedance with a bandpass filtering response,” J Electromagn Eng Sci, vol. 18, pp. 41–45, 2018, https://doi.org/10.26866/jees.2018.18.1.41.Search in Google Scholar

[10] T. L. Wu, Y. M. Pan, P. F. Hu, and S. Y. Zheng, “Design of a low profile and compact omnidirectional filtering patch antenna,” IEEE Access, vol. 5, pp. 1083–1089, 2017, https://doi.org/10.1109/ACCESS.2017.2651143.Search in Google Scholar

[11] J. Park, M. Jeong, N. Hussain, S. Rhee, P. Kim, and N. Kim, “Design and fabrication of triple-band folded dipole antenna for GPS/DCS/WLAN/WiMAX applications,” Microw. Opt. Technol. Lett., vol. 61, pp. 1328–1332, 2019, https://doi.org/10.1002/mop.31739.Search in Google Scholar

[12] N. Hussain, M. Jeong, J. Park, S. Rhee, P. Kim, and N. Kim, “A compact size 2.9-23.5 GHz microstrip patch antenna with WLAN band-rejection,” Microw. Opt. Technol. Lett., vol. 61, pp. 1307–1313, 2019, https://doi.org/10.1002/mop.31708.Search in Google Scholar

[13] Y. Zhang, W. Hong, C. Yu, Z. Q. Kuai, Y. D. Don, and J. Y. Zhou, “Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line,” IEEE Trans. Antenn. Propag., vol. 56, pp. 3063–3068, 2008, https://doi.org/10.1109/TAP.2008.928815.Search in Google Scholar

[14] K. Y. Mok, Y. C. Rhee, and J. H. Yoon, “Design of a pot-shaped monopole antenna with dual band notched characteristics for UWB application,” J Electromagn Eng Sci, vol. 17, pp. 44–49, 2017, https://doi.org/10.5515/JKIEES.2017.17.1.44.Search in Google Scholar

[15] H. U. Bong, M. Jeong, N. Hussain, S. Y. Rhee, S. K. Gil, and N. Kim, “Design of an UWB antenna with two slits for 5G/WLAN-notched bands,” Microw. Opt. Technol. Lett., vol. 61, pp. 1295–1300, 2019, https://doi.org/10.1002/mop.31670.Search in Google Scholar

[16] M. Yazdi and N. Komjani, “Design of a band-notched UWB monopole antenna by means of an EBG structure,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 170–173, 2011, https://doi.org/10.1109/LAWP.2011.2116150.Search in Google Scholar

[17] N. Jaglan, B. K. Kanaujia, S. D. Gupta, and S. Srivastava, “Triple band notched UWB antenna design using electromagnetic band gap structures,” Prog Electromagn Res C, vol. 66, pp. 139–147, 2016, https://doi.org/10.2528/PIERC16052304.Search in Google Scholar

[18] A. Iqbal, A. Smida, N. K. Mallat, M. T. Islam, and S. Kim, “A compact UWB antenna with independently controllable notch bands,” Sensors (Switzerland), vol. 19, pp. 1–12, 2019, https://doi.org/10.3390/s19061411.Search in Google Scholar

[19] S. W. Qu, J. L. Li, and Q. Xue, “A band-notched ultrawideband printed monopole antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 5, pp. 495–498, 2006, https://doi.org/10.1109/LAWP.2006.886303.Search in Google Scholar

[20] X. L. Bao and M. J. Ammann, “Printed UWB antenna with coupled slotted element for notch-frequency function,” Int. J. Antenn. Propag., vol. 2008, pp. 1–8, 2008, https://doi.org/10.1155/2008/713921.Search in Google Scholar

[21] A. Tariq and H. Ghafouri-Shiraz, “Frequency-reconfigurable monopole antennas,” IEEE Trans. Antenn. Propag., vol. 60, pp. 44–50, 2012, https://doi.org/10.1109/TAP.2011.2167929.Search in Google Scholar

[22] Y. Sung, “Triple band-notched UWB planar monopole antenna using a modified H-shaped resonator,” IEEE Trans. Antenn. Propag., vol. 61, pp. 953–957, 2013, https://doi.org/10.1109/TAP.2012.2223434.Search in Google Scholar

[23] T. Sharma, G. Varshney, and R. S. Y. M. Vashishath, “Obtaining the tunable band-notch in ultrawideband THz antenna using graphene nanoribbons,” Opt. Eng., vol. 59, 2020, Art no. 047103, https://doi.org/10.1117/1.OE.59.4.047103.Search in Google Scholar

[24] M. R. Hamid, P. Gardner, P. S. Hall, and F. Ghanem, “Vivaldi antenna with integrated switchable band pass resonator,” IEEE Trans. Antenn. Propag., vol. 59, pp. 4008–4015, 2011, https://doi.org/10.1109/TAP.2011.2164197.Search in Google Scholar

[25] S. Gotra, G. Varshney, R. S. Yaduvanshi, and V. S. Pandey, “Dual-band circular polarisation generation technique with the miniaturisation of a rectangular dielectric resonator antenna,” IET Microw., Antennas Propag., 2019, Vol 13 iss 10, pp.1742-1748.10.1049/iet-map.2019.0030Search in Google Scholar

[26] S. Y. Chen and P. Hsu, “Broad-band radial slot antenna fed by coplanar waveguide for dual-frequency operation,” IEEE Trans. Antenn. Propag., vol. 53, pp. 3448–3452, 2005, https://doi.org/10.1109/TAP.2005.858574.Search in Google Scholar

[27] X. L. Bao and M. J. Ammann, “Dual-frequency circularly-polarized patch antenna with compact size and small frequency ratio,” IEEE Trans. Antenn. Propag., vol. 55, pp. 2104–2107, 2007, https://doi.org/10.1109/TAP.2007.900271.Search in Google Scholar

[28] W. Liao, Q. X. Chu, and S. Du, “A small frequency ratio dual-band circularly polarized microstrip antenna,” in APMC 2009-Asia Pacific Microw Conf 2009 2009, pp. 2798–2801.10.1109/APMC.2009.5385309Search in Google Scholar

[29] C. H. Chen and E. K. N. Yung, “Dual-band circularly-polarized CPW-fed slot antenna with a small frequency ratio and wide bandwidths,” IEEE Trans. Antenn. Propag., vol. 59, pp. 1379–1384, 2011, https://doi.org/10.1109/TAP.2011.2109347.Search in Google Scholar

[30] C. Z. N. Nasimuddin and X. Qing, “Dual-band circularly polarized S-shaped slotted patch antenna with a small frequency-ratio,” IEEE Trans. Antenn. Propag., vol. 58, pp. 2112–2115, 2010, https://doi.org/10.1109/TAP.2010.2046851.Search in Google Scholar

[31] D. Yang, F. Cao, and J. Pan, “A single-layer dual-frequency,” Shared-Aperture, vol. 17, pp. 2018–2021, 2018.10.1109/LAWP.2018.2830760Search in Google Scholar

[32] S. Maci, G. Biffi Gentili, P. Piazzesi, and C. Salvador, “Dual-band slot-loaded patch antenna,” IEE Proc. Microw. Antenn. Propag., vol. 142, pp. 225–232, 1995, https://doi.org/10.1049/ip-map:19951932.10.1049/ip-map:19951932Search in Google Scholar

[33] K. P. Yang and K. L. Wong, “Dual-band circularly-polarized square microstrip antenna,” IEEE Trans. Antenn. Propag., vol. 49, pp. 377–382, 2001, https://doi.org/10.1109/8.918611.Search in Google Scholar

[34] M. D. Wright, W. Baron, J. Miller, J. Tuss, D. Zeppettella, and M. Ali, “MEMS reconfigurable broadband patch antenna for conformal applications,” IEEE Trans. Antenn. Propag., vol. 66, pp. 2770–2778, 2018, https://doi.org/10.1109/TAP.2018.2819818.Search in Google Scholar

[35] Q. Liu, N. Wang, C. Wu, G. Wei, and A. B. Smolders, “Frequency reconfigurable antenna controlled by multi-reed switches,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 927–930, 2015, https://doi.org/10.1109/LAWP.2014.2386694.Search in Google Scholar

[36] B. A. Cetiner, G. Roqueta Crusats, L. Jofre, and N. Biyikli, “RF MEMS integrated frequency reconfigurable annular slot antenna,” IEEE Trans. Antenn. Propag., vol. 58, pp. 626–632, 2010, https://doi.org/10.1109/TAP.2009.2039300.Search in Google Scholar

[37] I. T. E. Elfergani, A. S. Hussaini, C. H. See, et al.., “Printed monopole antenna with tunable band-notched characteristic for use in mobile and ultra-wide band applications,” Int J RF Microw Comput Eng, vol. 25, pp. 403–412, 2015, https://doi.org/10.1002/mmce.20874.Search in Google Scholar

[38] N. Nguyen-trong, L. Hall, and C. Fumeaux, “A frequency- and pattern-reconfigurable center-shorted microstrip antenna,” IEEE Antennas Propag Lett, vol. 15, pp. 1955–1958, 2016.10.1109/LAWP.2016.2544943Search in Google Scholar

[39] Y. H. Cui, P. P. Zhang, and R. L. Li, “Broadband quad-polarisation reconfigurable antenna,” Electron. Lett., vol. 54, pp. 1199–1200, 2018, https://doi.org/10.1049/el.2018.5244.Search in Google Scholar

[40] P. Y. Qin, Y. Jay Guo, and C. Ding, “A dual-band polarization reconfigurable antenna for WLAN systems,” IEEE Trans. Antenn. Propag., vol. 61, pp. 5706–5713, 2013, https://doi.org/10.1109/TAP.2013.2279219.Search in Google Scholar

[41] L. Ge and K. M. Luk, “Frequency-reconfigurable low-profile circular monopolar patch antenna,” IEEE Trans. Antenn. Propag., vol. 62, pp. 3443–3449, 2014, https://doi.org/10.1109/TAP.2014.2318077.Search in Google Scholar

[42] G. Chen, X. L. Yang, and Y. Wang, “Dual-band frequency-reconfigurable folded slot antenna for wireless communications,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 1386–1389, 2012, https://doi.org/10.1109/LAWP.2012.2227293.Search in Google Scholar

[43] J. Perruisseau-Carrier, P. Pardo-Carrera, and P. Miskovsky, “Modeling, design and characterization of a very wideband slot antenna with reconfigurable band rejection,” IEEE Trans. Antenn. Propag., vol. 58, pp. 2218–2226, 2010, https://doi.org/10.1109/TAP.2010.2048872.Search in Google Scholar

[44] S. Nikolaou, R. Bairavasubramanian, C. Lugo, et al.., “Pattern and frequency reconfigurable annular slot antenna using pin diodes,” IEEE Trans. Antenn. Propag., vol. 54, pp. 439–448, 2006. https://doi.org/10.1109/TAP.2005.863398.Search in Google Scholar

[45] H. A. Majid, M. K. A. Rahim, M. R. Hamid, and M. F. Ismail, “A compact frequency-Reconfigurable narrowband microstrip slot antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 616–619, 2012. https://doi.org/10.1109/LAWP.2012.2202869.Search in Google Scholar

[46] H. A. Majid, M. K. A. Rahim, M. R. Hamid, M. F. Ismail, and M. R. Sani, “Frequency reconfigurable microstrip patch antenna,” in 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics APACE 2012-Proceedings, 2012, pp. 342–345.10.1109/APACE.2012.6457690Search in Google Scholar

[47] H. A. Majid, M. K. A. Rahim, M. R. Hamid, M. F. Ismail, and F. Malek, “Frequency reconfigurable wide to narrow band monopole with slotted ground plane antenna,” J. Electromagn. Waves Appl., vol. 26, pp. 1460–1469, 2012. https://doi.org/10.1080/09205071.2012.702536.Search in Google Scholar

[48] F. Meng and S. K. Sharma, “Single feed dual-frequency orthogonal linear-polarization microstrip patch antenna with large frequency ratio,” IEEE Antennas Propag. Soc. AP-S Int. Symp., vol. 2015, pp. 836–837, 2015, https://doi.org/10.1109/APS.2015.7304805.Search in Google Scholar

[49] F. Meng and S. K. Sharma, “A dual-band high-gain resonant cavity antenna with a single layer superstrate,” IEEE Trans. Antenn. Propag., vol. 63, pp. 2320–2325, 2015. https://doi.org/10.1109/TAP.2015.2405082.Search in Google Scholar

[50] S. Du, Q. X. Chu, and W. Liao, “Dual-band circularly polarized stacked square microstrip antenna with small frequency ratio,” J. Electromagn. Waves Appl., vol. 24, pp. 1599–1608, 2010. https://doi.org/10.1163/156939310792149696.Search in Google Scholar

[51] Z. Wang, R. She, J. Han, S. Fang, and Y. Liu, “Dual-band dual-sense circularly polarized stacked patch antenna with a small frequency ratio for UHF RFID reader applications,” IEEE Access, vol. 5, 2017. https://doi.org/10.1109/ACCESS.2017.2733625.Search in Google Scholar

[52] P. Nayeri, K. F. Lee, A. Z. Elsherbeni, and F. Yang, “Dual-band circularly polarized antennas using stacked patches with asymmetric u-slots,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 492–495, 2011. https://doi.org/10.1109/LAWP.2011.2153820.Search in Google Scholar

[53] J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag., vol. 64, pp. 109–116, 2016. https://doi.org/10.1109/TAP.2015.2501847.Search in Google Scholar

[54] Z. X. Liang, D. C. Yang, X. C. Wei, and E. P. Li, “Dual-band dual circularly polarized microstrip antenna with two eccentric rings and an arc-shaped conducting strip,” IEEE Antenn. Wireless Propag. Lett., vol. 15, pp. 834–837, 2016. https://doi.org/10.1109/LAWP.2015.2476505.Search in Google Scholar

[55] J. D. Zhang, L. Zhu, N. W. Liu, and W. Wu, “Dual-band and dual-circularly polarized single-layer microstrip array based on multiresonant modes,” IEEE Trans. Antenn. Propag., vol. 65, pp. 1428–1433, 2017. https://doi.org/10.1109/TAP.2016.2647582.Search in Google Scholar

[56] D. Sheet, “SMP1320 Series : low resistance , low capacitance,” Plastics, vol. 23, pp. 1–7, 2006.Search in Google Scholar

[57] N. Jaglan, S. D. Gupta, B. K. Kanaujia, and S. Srivastava, “Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures,” Wirel. Netw., vol. 24, pp. 383–393, 2018. https://doi.org/10.1007/s11276-016-1343-7.Search in Google Scholar

[58] P. Gao, S. He, X. Wei, et al.., “Compact printed UWB diversity slot antenna,” IEEE Antenn. Wirel. Propag. Lett., vol. 1, pp. 10–13, 2014. https://doi.org/10.1109/LAWP.2014.2305772.Search in Google Scholar

[59] S. M. Khan, M. A. S. Adnan, and D. B. Antonio-Daniele C, “A compact four elements UWB MIMO antenna with on-demand WLAN rejection,” Microw. Opt. Technol. Lett., vol. 58, pp. 270–276, 2016. https://doi.org/10.1002/mop.Search in Google Scholar

[60] J. Y. Siddiqui, C. Saha, and Y. M. M. Antar, “Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics,” IEEE Trans. Antenn. Propag., vol. 62, pp. 4015–4020, 2014. https://doi.org/10.1109/TAP.2014.2327124.Search in Google Scholar

[61] G. Mishra and S. Sudhakar, “Compact circular patch UWB antenna with WLAN band notch characteristics,” Microw. Opt. Technol. Lett., vol. 58, pp. 1068–1073, 2016. https://doi.org/10.1002/mop.Search in Google Scholar

[62] R. Azim and M. T. Islam, “Compact planar uwb antenna with band notch characteristics for WLAN and DSRC,” Prog Electromagn Res, vol. 133, pp. 391–406, 2013.10.2528/PIER12090601Search in Google Scholar

[63] T. Mandal and S. Das, “Design of a microstrip fed printed monopole antenna for bluetooth and UWB applications with WLAN notch band characteristics,” Int J RF Microw Comput Eng, vol. 25, pp. 66–74, 2015. https://doi.org/10.1002/mmce.20824.Search in Google Scholar

[64] S. Yadav, K. Gautam Anil, and B. K. Kanaujia, “Design of miniaturized single band-notch micro strip antenna with enhanced UWB performance,” Microw. Opt. Technol. Lett., vol. 58, pp. 1494–1499, 2016. https://doi.org/10.1002/mop.Search in Google Scholar

[65] Y. K. Choukiker and S. K. Behera, “Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics,” IET Microw., Antennas Propag., vol. 8, pp. 506–512, 2014. https://doi.org/10.1049/iet-map.2013.0235.Search in Google Scholar

Received: 2020-10-04
Accepted: 2021-03-22
Published Online: 2021-04-16
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2020-0173/html
Scroll to top button