Skip to main content
Log in

Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network.

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The first fractional model for Reynolds stresses in wall-bounded turbulent flows was proposed by Wen Chen [2]. Here, we extend this formulation by allowing the fractional order α(y) of the model to vary with the distance from the wall (y) for turbulent Couette flow. Using available direct numerical simulation (DNS) data, we formulate an inverse problem for α(y) and design a physics-informed neural network (PINN) to obtain the fractional order. Surprisingly, we found a universal scaling law for α(y+), where y+ is the non-dimensional distance from the wall in wall units. Therefore, we obtain a variable-order fractional model that can be used at any Reynolds number to predict the mean velocity profile and Reynolds stresses with accuracy better than 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Avsarkisov, S. Hoyas, M. Oberlack, J.P. Garćia-Galache, Turbulent plane Couette flow at moderately high reynolds number. J. of Fluid Mechanics 751 (2014), DOI:10.1017/jfm.2014.323.

  2. W. Chen, A speculative study of 2/3-order fractional Laplacian modeling of turbulence: Some thoughts and conjectures. Chaos: An Interdisciplinary J. of Nonlinear Science 16, No 2 (2006), ID 023126.

    MATH  Google Scholar 

  3. A.G. Churbanov, P.N. Vabishchevich, Numerical investigation of a space-fractional model of turbulent fluid flow in rectangular ducts. J. of Computational Phys. 321 (2016), 846–859.

    Article  MathSciNet  Google Scholar 

  4. B.P. Epps, B. Cushman-Roisin, Turbulence modeling via the fractional Laplacian. arXiv Preprint arXiv:1803.05286(2018)

    Google Scholar 

  5. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. Neural Networks 2, No 5 (1989), 359–366.

    Article  Google Scholar 

  6. D.P. Kingma, J.Ba. Adam, A method for stochastic optimization. arXiv Preprint arXiv:1412.6980(2014)

    Google Scholar 

  7. P.K. Kundu, I.M. Cohen, D.R. Dowling, Fluid Mechanics Academic Press (2012)

    MATH  Google Scholar 

  8. S. Nisizima, A. Yoshizawa, Turbulent channel and Couette flows using an anisotropic k-model. AIAA Journal 25, No 3 (1987), 414–420.

    Article  Google Scholar 

  9. G. Pang, L. Lu, G.E. Karniadakis, fPINN: Fractional physics-informed neural networks. SIAM J. on Scientific Computing 41, No 4 (2019), A2603–A2626.

    Article  MathSciNet  Google Scholar 

  10. L. Prandtl, Bericht uber untersuchungen zur ausgebildeten turbulenz. ZAMM - J. of Appl. Math. and Mech./Zeitschriftfur Angewandte Mathematik und Mechanik 5, No 2 (1925), 136–139.

    Article  Google Scholar 

  11. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. of Computational Physics 378 (2019), 686–707.

    Article  MathSciNet  Google Scholar 

  12. T. Sayadi, C.W. Hamman, P. Moin, Direct numerical simulation of complete h-type and k-type transitions with implications for the dynamics of turbulent boundary layers. J. of Fluid Mechanics 724 (2013), 480–509.

    Article  Google Scholar 

  13. F. Song, G.E. Karniadakis, A universal fractional model of wall-turbulence. arXiv Preprint arXiv:1808.10276(2018)

    Google Scholar 

  14. Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, No 2 (2006), 193–209.

    Article  MathSciNet  Google Scholar 

  15. H. Xu, X. Jiang, B. Yu, Numerical analysis of the space fractional Navier–Stokes equations. Appl. Math. Letters 69 (2017), 94–100.

    Article  MathSciNet  Google Scholar 

  16. Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Modelling 34, No 1 (2010), 200–218.

    Article  MathSciNet  Google Scholar 

  17. I. Podlubny, Fractional Differential Equations. Academic Press (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Pranjivan Mehta.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, P.P., Pang, G., Song, F. et al. Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network.. FCAA 22, 1675–1688 (2019). https://doi.org/10.1515/fca-2019-0086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0086

MSC 2010

Key Words and Phrases

Navigation