Skip to main content
Log in

Regularity of Solutions to Space–Time Fractional Wave Equations: A PDE Approach

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider an evolution equation involving the fractional powers, of order s ∈ (0, 1), of a symmetric and uniformly elliptic second order operator and Caputo fractional time derivative of order γ ∈ (1, 2]. Since it has been shown useful for the design of numerical techniques for related problems, we also consider a quasi–stationary elliptic problem that comes from the realization of the spatial fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi–infinite cylinder. We provide existence and uniqueness results together with energy estimates for both problems. In addition, we derive regularity estimates both in time and space; the time–regularity results show that the usual assumptions made in the numerical analysis literature are problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics (1964).

    MATH  Google Scholar 

  2. N.I. Achieser, Theory of Approximation. Dover Publications, Inc., New York (1992).

    MATH  Google Scholar 

  3. R.A. Adams, Sobolev Spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975).

    MATH  Google Scholar 

  4. I. Athanasopoulos, L.A. Caffarelli, Continuity of the temperature in boundary heat control problems. Adv. Math. 224, No. 1 (2010), 293–315.

    MathSciNet  MATH  Google Scholar 

  5. L. Banjai, J.M. Melenk, R.H. Nochetto, E. Otárola, A.J. Salgado, Ch. Schwab, Tensor FEM for spectral fractional diffusion. Found. Comput. Math. (2018), 1–62; DOI: 10.1007/s10208-018-9402-3.

    Google Scholar 

  6. M.Š. Birman, M.Z. Solomjak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve. Leningrad Univ., Leningrad (1980).

    Google Scholar 

  7. M. Bonforte, Y. Sire, J.L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. 35, No. 12 (2015), 5725–5767.

    MathSciNet  MATH  Google Scholar 

  8. X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, No. 5 (2010), 2052–2093.

    MathSciNet  MATH  Google Scholar 

  9. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, No. 7-9 (2007), 1245–1260.

    MathSciNet  MATH  Google Scholar 

  10. A. Capella, J. Dávila, L. Dupaigne, Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations. Comm. Partial Differential Equations 36, No. 8 (2011), 1353–1384.

    MathSciNet  MATH  Google Scholar 

  11. A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A fractional porous medium equation. Adv. Math. 226, No. 2 (2011), 1378–1409.

    MathSciNet  MATH  Google Scholar 

  12. A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A general fractional porous medium equation. Comm. Pur. Appl. Math. 65, No. 9 (2012), 1242–1284.

    MathSciNet  MATH  Google Scholar 

  13. M. Dehghan, M. Abbaszadeh, A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. Algorithms 73, No. 2 (2016), 445–476.

    MathSciNet  MATH  Google Scholar 

  14. R. Du, W.R. Cao, Z.Z. Sun, A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, No. 10 (2010), 2998–3007.

    MathSciNet  MATH  Google Scholar 

  15. J. Duoandikoetxea, Fourier Analysis. Ser. Graduate Studies in Mathematics # 29, American Mathematical Society Providence - RI (2001).

    MATH  Google Scholar 

  16. L.C. Evans, Partial Differential Equations. Ser. Graduate Studies in Mathematics # 19, American Mathematical Society, Providence - RI 2nd Ed. (2010).

    MATH  Google Scholar 

  17. D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad. 43 (1967), 82–86.

    MathSciNet  MATH  Google Scholar 

  18. V. Gol’dshtein, A. Ukhlov, Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc. 361, No. 7 (2009), 3829–3850.

    MathSciNet  MATH  Google Scholar 

  19. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics, Springer, Heidelberg (2014).

    MATH  Google Scholar 

  20. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Ser. Classics in Applied Mathematics, # 69 SIAM, Philadelphia, PA (2011).

    MATH  Google Scholar 

  21. J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs. The Clarendon Press - Oxford Univ. Press, New York (1993).

    MATH  Google Scholar 

  22. V.R. Hosseini, E. Shivanian, W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J. Comput. Phys. 312 (2016), 307–332.

    MathSciNet  MATH  Google Scholar 

  23. X. Hu, L. Zhang, On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 218, No. 9 (2012), 5019–5034.

    MathSciNet  MATH  Google Scholar 

  24. J.-P. Kahane, Teoría constructiva de funciones. Universidad de Buenos Aires, Buenos Aires (1961).

    MATH  Google Scholar 

  25. Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20, No. 1 (2017), 117–138; DOI: 10.1515/fca-2017-0006; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  26. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006).

    MATH  Google Scholar 

  27. A. Kufner, Weighted Sobolev Spaces. Ser. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980).

    MATH  Google Scholar 

  28. A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25, No. 3 (1984), 537–554.

    MathSciNet  MATH  Google Scholar 

  29. N.S. Landkof, Foundations of Modern Potential Theory. Springer-Verlag, New York-Heidelberg (1972).

    MATH  Google Scholar 

  30. L. Li, D. Xu, M. Luo, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 255 (2013), 471–485.

    MathSciNet  MATH  Google Scholar 

  31. Z. Li, O.Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations. Inverse Probl. 32, No. 1 (2016).

    Google Scholar 

  32. J.-L. Magenes, E. Lions, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Springer-Verlag, New York-Heidelberg (1972).

  33. Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59, No. 5 (2010), 1766–1772.

    MathSciNet  MATH  Google Scholar 

  34. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000).

    MATH  Google Scholar 

  35. W. McLean, Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, No. 2 (2010), 123–138.

    MathSciNet  MATH  Google Scholar 

  36. W. McLean, V. Thomée, Numerical solution of an evolution equation with a positive-type memory term. J. Austral. Math. Soc. Ser. B 35, No. 1 (1993), 23–70.

    MathSciNet  MATH  Google Scholar 

  37. D. Meidner, J. Pfefferer, K. Schürholz, B. Vexler, hp-finite elements for fractional diffusion. SIA. J. Numer. Anal. 56, No. 4 (2018), 2345–2374.

    MathSciNet  MATH  Google Scholar 

  38. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207–226.

    MathSciNet  MATH  Google Scholar 

  39. R.H. Nochetto, E. Otárola, A.J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15, No. 3 (2015), 733–791.

    MathSciNet  MATH  Google Scholar 

  40. F.W.J. Olver, Asymptotics and Special Functions. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1974).

    MATH  Google Scholar 

  41. E. Otárola, A PDE Approach to Numerical Fractional Diffusion. PhD thesis University of Maryland, College Park (2014).

    Google Scholar 

  42. I. Podlubny, Fractional Differential Equations Ser. Mathematics in Science and Engineering #198, Academic Press, Inc., San Diego, CA (1999).

    MATH  Google Scholar 

  43. T. Roubíček, Nonlinear Partial Differential Equations with Applications International Series of Numerical Mathematics #153, Birkhäuser/Springer Basel AG, Basel, 2ndEd. (2013).

    MATH  Google Scholar 

  44. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, No. 1 (2011), 426–447.

    MathSciNet  MATH  Google Scholar 

  45. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publ., Yverdon (1993).

    MATH  Google Scholar 

  46. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60, No. 1 (2007), 67–112.

    MathSciNet  MATH  Google Scholar 

  47. P.R. Stinga, J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Comm. Part. Diff. Eqs. 35, No. 11 (2010), 2092–2122.

    MathSciNet  MATH  Google Scholar 

  48. Z.-Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, No. 2 (2006), 193–209.

    MathSciNet  MATH  Google Scholar 

  49. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana # 3, Springer, Berlin (2007).

    MATH  Google Scholar 

  50. B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics # 1736, Springer-Verlag, Berlin (2000).

    MATH  Google Scholar 

  51. J.L. Vázquez, B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type. J. Math. Pures Appl. (9) 101, No. 5 (2014), 553–582.

    MathSciNet  MATH  Google Scholar 

  52. Y.-N. Zhang, Z.-Z. Sun, X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, No. 3 (2012), 1535–1555.

    MathSciNet  MATH  Google Scholar 

  53. X. Zhao, Z.-Z. Sun, Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, No. 3 (2015), 747–771.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Otárola.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otárola, E., Salgado, A.J. Regularity of Solutions to Space–Time Fractional Wave Equations: A PDE Approach. FCAA 21, 1262–1293 (2018). https://doi.org/10.1515/fca-2018-0067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0067

MSC 2010

Key Words and Phrases

Navigation