Skip to main content
Log in

Non-Instantaneous Impulses in Caputo Fractional Differential Equations

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Recent modeling of real world phenomena give rise to Caputo type fractional order differential equations with non-instantaneous impulses. The main goal of the survey is to highlight some basic points in introducing non-instantaneous impulses in Caputo fractional differential equations. In the literature there are two approaches in interpretation of the solutions. Both approaches are compared and their advantages and disadvantages are illustrated with examples. Also some existence results are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbas, M. Benchohra, Uniqueness and Ulam stability results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257 (2015), 190–198.

    MathSciNet  MATH  Google Scholar 

  2. S. Abbas, M. Benchohra, M. A. Darwish, New stability results for partial fractional differential inclusions with not instantaneous impulses. Fract. Calc. Appl. Anal. 18, No 1 (2015), 172–191; DOI: 10.1515/fca-2015-0012; https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  3. S. Abbas, M. Benchohra, J.J. Trujillo, Upper and lower solutions method for partial fractional differential inclusions with not instantaneous impulses. Progr. Fract. Differ. Appl. 1, No 1 (2015), 11–22.

    Google Scholar 

  4. R. Agarwal, M. Benchohra, B. Slimani, Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys 44 (2008), 1–21.

    MathSciNet  MATH  Google Scholar 

  5. R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033.

    MathSciNet  MATH  Google Scholar 

  6. R. Agarwal, S. Hristova, D. O’Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions. J. Franklin Inst. 354 (2017), 3097–3119.

    MathSciNet  MATH  Google Scholar 

  7. R. Agarwal, S. Hristova, D. O’Regan, p-Moment exponential stability of Caputo fractional differential equations with noninstantaneous random impulses. J. Appl. Math. Comput. 2016 (2016), 1–26; DOI: 10.1007/s12190-016-1030-y.

    MATH  Google Scholar 

  8. R. Agarwal, S. Hristova, D. O’Regan, Stability of solutions to impulsive Caputo fractinal differential equations. Elect. J. Diff. Eq. 2016 (2016), ID No 58, 1–22.

    MATH  Google Scholar 

  9. R. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal., 19, No 2 (2016), 290–318; DOI: 10.1515/fca-2016-0017; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  10. R. Agarwal, D. O’Regan, S. Hristova, Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses. Appl. Math. Comput. 298 (2017), 45–56.

    MathSciNet  MATH  Google Scholar 

  11. R. Agarwal, D. O’Regan, S. Hristova, Stability of Caputo fractional differential equations with non-instantaneous impulses. Commun. Appl. Anal. 20 (2016), 149–174.

    MATH  Google Scholar 

  12. R. Agarwal, D. O’Regan, S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with noninstantaneous impulses. J. Appl. Math. Comput. 2015 (2015); DOI: 10.1007/s12190-015-0961-z.

  13. B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3 (2009), 251–258.

    MathSciNet  MATH  Google Scholar 

  14. A. Anguraj, S. Kanjanadevi, Existence of mild solutions of abstract fractional differential equations with non-instantaneous impulsive conditions. J. Stat. Sci. Appl. 4, No 01-02 (2016), 53–64.

    MATH  Google Scholar 

  15. A. Anguraj, S. Kanjanadevi, Existence results for fractional integro-differential equations with fractional order non-instantaneous impulsive conditions. J. Adv. Appl. Math. 1, No 1 (2016), 44–58.

    MATH  Google Scholar 

  16. M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ., Spec. Ed. I 2009, No 8 (2009).

    Google Scholar 

  17. G. Bonanno, R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equation. Fract. Calc. Appl. Anal. 17, No 3 (2014), 717–744; DOI: 10.2478/s13540-014-0196-y; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    MathSciNet  MATH  Google Scholar 

  18. K. Diethelm, The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin, Heidelberg, 2010.

    MATH  Google Scholar 

  19. M. Feckan, J.R. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with non-istantaneous impulses. Nonauton. Dyn. Syst. 1 (2014), 93–101.

    MathSciNet  MATH  Google Scholar 

  20. M. Feckan, Y. Zhou, J.R. Wang, On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonl. Sci. Numer. Simul. 17 (2012), 3050–3060.

    MathSciNet  MATH  Google Scholar 

  21. G.R. Gautam, J. Dabas, Existence of mild solutions for impulsive fractional differential equations in order α ∈(1,2). In: S. Pinelas et al. (Eds), Diff. Eq. with Appl.: ICDDE, Proc. in Math. and Stat. 104 (2016), 141–148.

    MATH  Google Scholar 

  22. E. Hernandez, D. O’Regan, On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141 (2013), 1641–1649.

    MathSciNet  MATH  Google Scholar 

  23. S. Hristova, R. Terzieva, Lipschitz stability of differential equations with non-instantaneous impulses. Adv. Diff. Eq. 2016 (2016), ID # 322, 1–13.

    MathSciNet  MATH  Google Scholar 

  24. T.D. Ke, D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 17, No 1 (2014), 96–121; DOI: 10.2478/s13540-014-0157-5; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  25. P. Kumar, D. N. Pandey, D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order. J. Nonlinear Sci. Appl. 7 (2014), 102–114.

    MathSciNet  MATH  Google Scholar 

  26. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989.

    Google Scholar 

  27. P. Li, Ch. Xu, Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses. J. Function Spaces 2015 (2015), Article ID 954925.

  28. Y. Li, Y. Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica J. IFAC 45, No 8 (2009), 1965–1969.

    MathSciNet  MATH  Google Scholar 

  29. D.N. Pandey, S. Das, N. Sukavanam, Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses. Intern. J. Nonlinear Sci. 18, No 2 (2014), 145–155.

    MathSciNet  MATH  Google Scholar 

  30. M. Pierri, D. O’Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219 (2013), 6743–6749.

    MathSciNet  MATH  Google Scholar 

  31. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  32. R. Rodrıguez-Lopez, S. Tersian, Multiple solutions to boundary value problm for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1016–1038; DOI: 10.2478/s13540-014-0212-2; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  33. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Transl. from the 1987 Russian original). Gordon and Breach Science Publishers, Yverdon, 1993.

    MATH  Google Scholar 

  34. A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations. World Scientific, Singapore, 1995.

    MATH  Google Scholar 

  35. A. Sood, S.K. Srivastava, On stability of differential systems with noninstantaneous impulses. Math. Probl. Eng. 2015 (2015), Article ID 691687.

  36. I. Stamova, Mittag-Leffler stability of impulsive differential equations of fractional order. Q. Appl. Math. 73, No 3 (2015), 525–535.

    MathSciNet  MATH  Google Scholar 

  37. J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. in Nonlinear Sci. and Numer. Simul. 16, No 3 (2011), 1140–1153; DOI: 10.1016/j.cnsns.2010.05.027.

    MathSciNet  MATH  Google Scholar 

  38. J.A. Tenreiro Machado, V. Kiryakova, The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20, No 2 (2017), 307–336; DOI: 10.1515/fca-2017-0017; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  39. J.R. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, No 4 (2016), 806–831; DOI: 10.1515/fca-2016-0044; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  40. J.R. Wang, M. Feckan, Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations. J. Optim. Theory Appl. 156 (2013), 13–32.

    MathSciNet  MATH  Google Scholar 

  41. J.R. Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. 46, No 1-2 (2014), 321–334.

    MathSciNet  MATH  Google Scholar 

  42. J.R. Wang, L. Lv, Y. Zhou, New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 2530–2538.

    MathSciNet  MATH  Google Scholar 

  43. J. Wang, Z. Lin, A class of impulsive nonautonomous differential equations and Ulam–Hyers–Rassias stability. Math. Meth. Appl. Sci. 38, No 5 (2015), 868–880.

    MathSciNet  MATH  Google Scholar 

  44. J. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242 (2014), 649–657.

    MathSciNet  MATH  Google Scholar 

  45. X. Yu, Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses. Adv. Diff. Eq. 2015 (2015), ID # 104, 1–13.

    MathSciNet  Google Scholar 

  46. H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075–1081.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Agarwal.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Hristova, S. & O’Regan, D. Non-Instantaneous Impulses in Caputo Fractional Differential Equations. FCAA 20, 595–622 (2017). https://doi.org/10.1515/fca-2017-0032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0032

MSC 2010

Key Words and Phrases

Navigation