Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 23, 2015

Pharmacogenetics of drug oxidation via cytochrome P450 (CYP) in the populations of Denmark, Faroe Islands and Greenland

  • Kim Brosen EMAIL logo

Abstract

Denmark, the Faroe Islands and Greenland are three population-wise small countries on the northern part of the Northern Hemisphere, and studies carried out here on the genetic control over drug metabolism via cytochrome P450 have led to several important discoveries. Thus, CYP2D6 catalyzes the 2-hydroxylation, and CYP2C19 in part catalyzes the N-demethylation of imipramine. The phenomenon of phenocopy with regard to CYP2D6 was first described when Danish patients changed phenotype from extensive to poor metabolizers during treatment with quinidine. It was a Danish extensive metabolizer patient that became a poor metabolizer during paroxetine treatment, and this was due to the potent inhibition of CYP2D6 by paroxetine, which is also is metabolized by this enzyme. Fluoxetine and norfluoxetine are also potent inhibitors of CYP2D6, and fluvoxamine is a potent inhibitor of both CYP1A2 and CYP2C19. The bioactivation of proguanil to cycloguanil is impaired in CYP2C19 poor metabolizers. The O-demethylation of codeine and tramadol to their respective my-opioid active metabolites, morphine and (+)-O-desmethyltramadol was markedly impaired in CYP2D6 poor metabolizers compared to extensive metabolizers, and this impairs the hypoalgesic effect of the two drugs in the poor metabolizers. The frequency of CYP2D6 poor metabolizers is 2%–3% in Greenlanders and nearly 15% in the Faroese population. The frequency of CYP2C19 poor metabolizers in East Greenlanders is approximately 10%. A study in Danish mono and dizygotic twins showed that the non-polymorphic 3-N-demethylation of caffeine catalyzed by CYP1A2 is subject to approximately 70% genetic control.


Corresponding author: Kim Brosen, Institute of Public Health, Clinical Pharmacology, University of Southern Denmark, J.B. Winsløws Vej 19, 5000 Odense C, Denmark, Phone: +45 6550 3751, Mobile: +45 2015 3751, E-mail:

Acknowledgments

Karin Kramer Nielsen, Birgitte Buur Rasmussen, Jonrit Halling, Maria Skaalum Pedersen, Stine T. Zwisler, Lars F. Gram, Søren H. Sindrup, Troels Bergmann, Tore Bjerregaard Stage and Rasmus S. Pedersen have read the manuscripts and made valuable comments.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 2008;392:1093–108.10.1007/s00216-008-2291-6Search in Google Scholar

2. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103–41.10.1016/j.pharmthera.2012.12.007Search in Google Scholar

3. Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 1979;16:183–7.10.1007/BF00562059Search in Google Scholar

4. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977;2:584–6.10.1016/S0140-6736(77)91430-1Search in Google Scholar

5. Bertilsson L, Dengler HJ, Eichelbaum M, Schulz HU. Pharmacogenetic covariation of defective N-oxidation of sparteine and 4-hydroxylation of debrisoquine. Eur J Clin Pharmacol 1980;17:153–5.10.1007/BF00562624Search in Google Scholar PubMed

6. Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 1988;331:442–6.10.1038/331442a0Search in Google Scholar PubMed

7. Brøsen K, Otton SV, Gram LF. Sparteine oxidation polymorphism in Denmark. Acta Pharmacol Toxicol 1985;57:357–60.10.1111/j.1600-0773.1985.tb00058.xSearch in Google Scholar PubMed

8. Brøsen K, Otton SV, Gram LF. Sparteine oxidation polymorphism – A family study. Br J Clin Pharmacol 1986;21:661–7.10.1111/j.1365-2125.1986.tb05231.xSearch in Google Scholar PubMed PubMed Central

9. Drøhse A, Bathum L, Brøsen K, Gram LF. Mephenytoin and sparteine oxidation: genetic polymorphisms in Denmark. Br J Clin Pharmacol 1989;27:620–5.10.1111/j.1365-2125.1989.tb03426.xSearch in Google Scholar PubMed PubMed Central

10. Madsen H, Nielsen KK, Brøsen K. Imipramine metabolism in relation to the sparteine and the mephenytoin oxidation polymorphisms. Br J Clin Pharmacol 1995;39:433–9.10.1111/j.1365-2125.1995.tb04473.xSearch in Google Scholar PubMed PubMed Central

11. Pedersen RS, Damkier P, Brøsen K. Tramadol as a probe for cytochrome P4502D6 phenotyping: a population study. Clin Pharmacol Ther 2005;77:458–67.10.1016/j.clpt.2005.01.014Search in Google Scholar

12. Otton SV, Inaba T, Kalow W. Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sci 1984;34:73–80.10.1016/0024-3205(84)90332-1Search in Google Scholar

13. Brinn R, Brøsen K, Gram LF, Haghfelt T, Otton SV. Sparteine oxidation is practically abolished in quinidine-treated patients. Br J Clin Pharmacol 1986;22:194–7.10.1111/j.1365-2125.1986.tb05250.xSearch in Google Scholar PubMed PubMed Central

14. Brøsen K, Gram LF, Haghfelt T, Bertilsson L. Extensive metabolizers of debrisoquine become poor metabolizers during quinidine treatment. Pharmacol Toxicol 1987;60:312–4.10.1111/j.1600-0773.1987.tb01758.xSearch in Google Scholar PubMed

15. Brøsen K, Nielsen PN, Brusgaard K, Gram LF, Skjødt K. CYP2D6 genotype determination in the Danish population. Eur J Clin Pharmacol 1994;47:221–5.10.1007/BF02570501Search in Google Scholar PubMed

16. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjöqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993;90:11825–9.10.1073/pnas.90.24.11825Search in Google Scholar PubMed PubMed Central

17. Bathum L, Johansson I, Ingelman-Sundberg M, Hørder M, Brøsen K. Ultrarapid metabolism of sparteine: frequency of alleles with duplicated CYP2D6 genes in a Danish population as determined by restriction fragment length polymorphism and long polymerase chain reaction. Pharmacogenetics 1998;8: 119–23.10.1097/00008571-199804000-00004Search in Google Scholar

18. Bathum L, Andersen-Ranberg K, Boldsen J, Brøsen K, Jeune B. Genotypes for the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human longevity. Role of CYP2D6 and CYP2C19 in longevity. Eur J Clin Pharmacol 1998;54:427–30.10.1007/s002280050487Search in Google Scholar PubMed

19. Jürgens G, Christensen HR, Brøsen K, Sonne J, Loft S, Olsen NV. Acute hypoxia and cytochrome P450-mediated hepatic drug metabolism in humans. Clin Pharmacol Ther 2002;71:214–20.10.1067/mcp.2002.121789Search in Google Scholar PubMed

20. Brøsen K. Sparteine oxidation polymorphism in Greenlanders living in Denmark. Br J Clin Pharmacol 1986;22:415–9.10.1111/j.1365-2125.1986.tb02911.xSearch in Google Scholar PubMed PubMed Central

21. Clasen K, Madsen L, Brøsen K, Albøge K, Misfeldt S, Gram LF. Sparteine and mephenytoin oxidation: genetic polymorphisms in East- and West Greenland. Clin Pharmacol Ther 1991;49:624–31.10.1038/clpt.1991.79Search in Google Scholar

22. Jorgensen TH, Buttenschon HN, Wang AG, Als TD, Børglum AD, Ewald H. The origin of the isolated population of the Faroe Islands investigated using Y chromosomal markers. Human Genet 2004;115:19–28.10.1007/s00439-004-1117-7Search in Google Scholar

23. Als TD, Jorgensen TH, Borglum AD, Petersen PA, Mors O, Wang AG. Highly discrepant proportions of female and male Scandinavian and British Isles ancestry within the isolated population of the Faroe Islands. Eur J Hum Genet 2006;14:497–504.10.1038/sj.ejhg.5201578Search in Google Scholar

24. Halling J, Petersen MS, Damkier P, Nielsen F, Grandjean P, Weihe P, et al. Polymorphism of CYP2D6, CYP2C19, CYP2C9 and CYP2C8 in the Faroese population. Eur J Clin Pharmacol 2005;61:491–7.10.1007/s00228-005-0938-1Search in Google Scholar

25. Alván G, Bechtel P, Iselius L, Gundert-Remy U. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol 1990;39:533–7.10.1007/BF00316090Search in Google Scholar

26. Küpfer A, Preisig R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 1984;26:753–9.10.1007/BF00541938Search in Google Scholar

27. Wrighton SA, Stevens JC, Becker GW, VandenBranden M. Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4′-hydroxylation. Arch Biochem Biophys 1993;306:240–5.10.1006/abbi.1993.1506Search in Google Scholar

28. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994;269:15419–22.10.1016/S0021-9258(17)40694-6Search in Google Scholar

29. Chang M, Tybring G, Dahl ML, Götharson E, Sagar M, Seensalu R, et al. Interphenotype differences in disposition and effect on gastrin levels of omeprazole – suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 1995;39:511–8.10.1111/j.1365-2125.1995.tb04488.xSearch in Google Scholar PubMed PubMed Central

30. Brøsen K, de Morais SM, Meyer UA, Goldstein JA. A multifamily study on the relationship between CYP2C19 genotype and S-mephenytoin oxidation phenotype. Pharmacogenetics 1995;5:312–7.10.1097/00008571-199510000-00007Search in Google Scholar PubMed

31. Ibeanu GC, Blaisdell J, Ferguson RJ, Ghanayem BI, Brøsen K, Benhamou S, et al. A novel transversion in the intron 5 donor splice junction of CYP2C19 and a sequence polymorphism in exon 3 contribute to the poor metabolizer phenotype for the anticonvulsant drug S-mephenytoin. J Pharmacol Exp Ther 1999;290:635–40.Search in Google Scholar

32. Pedersen RS, Noehr-Jensen L, Brosen K. The inhibitory effect of oral contraceptives on CYP2C19 activity is not significant in carriers of the CYP2C19*17 allele. Clin Exp Pharmacol Physiol 2013;40:683–8.Search in Google Scholar

33. Pedersen RS, Brasch-Andersen C, Sim SC, Bergmann TK, Halling J, Petersen MS, et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol 2010;66:1199–205.10.1007/s00228-010-0864-8Search in Google Scholar PubMed

34. Stage TB, Christensen MM, Feddersen S, Beck-Nielsen H, Brøsen K. The role of genetic variants in CYP2C8, LPIN1, PPARGCA and PPARy on the trough steady-state plasma concentrations of rosiglitazone and on glycosylated haemoglobin A1c in type 2 diabetes. Pharmacogenet Genomics 2013;23:219–27.10.1097/FPC.0b013e32835f91fcSearch in Google Scholar PubMed

35. Pedersen RS, Verstuyft C, Becquemont L, Jaillon P, Brøsen K. Cytochrome P4502C9 (CYP2C9) genotypes in a Nordic population in Denmark. Bas Clin Pharmacol Toxicol 2004;94:151–2.10.1111/j.1742-7843.2004.pto940309.xSearch in Google Scholar PubMed

36. Bergmann TK, Brasch-Andersen C, Gréen H, Mirza M, Pedersen RS, Nielsen F, et al. Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 2011;11: 113–20.10.1038/tpj.2010.19Search in Google Scholar PubMed

37. Gram LF. Factors influencing the metabolism of tricyclic antidepressants. Studies on interactions and first pass elimination. Dan Med Bull 1977;24:81–9.10.1016/B978-0-08-021308-8.51083-8Search in Google Scholar

38. Gram LF, Sondergaard I, Christiansen J, Petersen GO, Bech P, Reisby N, et al. Steady-state kinetics of imipramine in patients. Psychopharmacology (Berl) 1977;54:255–61.10.1007/BF00426573Search in Google Scholar PubMed

39. Reisby N, Gram LF, Bech P, Nagy A, Petersen GO, Ortmann J, et al. Imipramine: clinical effects and pharmacokinetic variability. Psychopharmacology (Berl) 1977;54:263–72.10.1007/BF00426574Search in Google Scholar PubMed

40. Bertilsson L, Aberg-Wistedt A. The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. Br J Clin Pharmacol 1983;15:388–90.10.1111/j.1365-2125.1983.tb01518.xSearch in Google Scholar PubMed PubMed Central

41. Brøsen K, Klysner R, Gram LF, Otton SV, Bech P, Bertilsson L. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986;30:679–84.10.1007/BF00608215Search in Google Scholar PubMed

42. Kirchheiner J, Brøsen K, Dahl ML, Gram LF, Kasper S, Roots I, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001;104:173–92.10.1034/j.1600-0447.2001.00299.xSearch in Google Scholar PubMed

43. Brøsen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1986;40:543–9.10.1038/clpt.1986.221Search in Google Scholar

44. Brøsen K, Gram LF. First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1988;43:400–6.10.1038/clpt.1988.50Search in Google Scholar

45. Brøsen K, Gram LF. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine. Eur J Clin Pharmacol 1989;37:155–60.10.1007/BF00558224Search in Google Scholar

46. Brøsen K, Zeugin TB, Meyer UA. Role of P450IID6, the target of the sparteine/debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 1991;49: 609–17.10.1038/clpt.1991.77Search in Google Scholar

47. Madsen H, Hansen TS, Brøsen K. Imipramine metabolism in relation to the sparteine oxidation polymorphism – a family study. Pharmacogenetics 1996;6:513–9.10.1097/00008571-199612000-00004Search in Google Scholar

48. Bergmann TK, Bathum L, Brøsen K. Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6. Eur J Clin Pharmacol 2001;57:123–7.10.1007/s002280100284Search in Google Scholar

49. Skjelbo E, Brøsen K, Hallas J, Gram LF. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991;49:18–23.10.1038/clpt.1991.4Search in Google Scholar

50. Skjelbo E, Gram LF, Brøsen K. The N-demethylation of imipramine correlates with the oxidation of S-mephenytoin (S/R-ratio). A population study. Br J Clin Pharmacol 1993;35:331–4.Search in Google Scholar

51. Madsen H, Rasmussen BB, Brøsen K. Imipramine demethylation in vivo: impact of CYP1A2, CYP2C19 and CYP3A4. Clin Pharmacol Ther 1997;61:319–24.10.1016/S0009-9236(97)90164-8Search in Google Scholar

52. Lemoine A, Gautier JC, Azoulay D, Kiffel L, Belloc C, Guengerich FP, et al. Major pathway of imipramine metabolism is by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993;43:827–32.Search in Google Scholar

53. Balant-Gorgia AE, Balant LP, Genet C, Dayer P, Aeschlimann JM, Garrone G. Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. Eur J Clin Pharmacol 1986;31:449–55.10.1007/BF00613523Search in Google Scholar PubMed

54. Nielsen KK, Brøsen K, Gram LF, DUAG. Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1992;43:405–11.10.1007/BF02220617Search in Google Scholar PubMed

55. Nielsen KK, Brøsen K, Hansen MG, Gram LF. Single dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin Pharmacol Ther 1994;55:518–27.10.1038/clpt.1994.65Search in Google Scholar

56. Nielsen KK, Flinois JP, Beaune P, Brøsen K. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther 1996;277:1659–64.Search in Google Scholar

57. Sjöqvist F, Bertilsson L. Slow hydroxylation of tricyclic antidepressants – relationship to polymorphic drug oxidation. Prog Clin Biol Res 1986;214:169–88.Search in Google Scholar

58. Breyer-Pfaff U, Pfandl B, Nill K, Nusser E, Monney C, Jonzier-Perey M, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992;52:350–8.10.1038/clpt.1992.155Search in Google Scholar

59. Gram LF, Brøsen K, Kragh-Sørensen P, Christensen P. Steady-state levels of E- and Z-10-OH-nortriptyline in nortriptyline treated patients: significance of concurrent medication and the sparteine oxidation phenotype. Ther Drug Monit 1989;11:508–14.10.1097/00007691-198909000-00003Search in Google Scholar

60. Halling J, Weihe P, Brøsen K. The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population. Br J Clin Pharmacol 2008;65:134–8.10.1111/j.1365-2125.2007.02969.xSearch in Google Scholar

61. Danish University Antidepressant Group (DUAG). Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance, but weaker antidepressant effect than clomipramine in a controlled multicenter study. J Affective Disord 1990;18:289–99.10.1016/0165-0327(90)90081-ISearch in Google Scholar

62. Brøsen K, Gram LF, Kragh-Sørensen P. Extremely slow metabolism of amitriptyline but normal metabolism of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine and mephenytoin. Ther Drug Monit 1991;13:177–82.10.1097/00007691-199103000-00015Search in Google Scholar PubMed

63. Skjelbo E, Brøsen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 1992;34:256–61.10.1111/j.1365-2125.1992.tb04133.xSearch in Google Scholar PubMed PubMed Central

64. Sindrup SH, Brøsen K, Gram LF, Hallas J, Skjelbo E, Allen A, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992;51:278–87.10.1038/clpt.1992.23Search in Google Scholar PubMed

65. Sindrup SH, Brøsen K, Gram LF. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine – nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992;51:288–95.10.1038/clpt.1992.24Search in Google Scholar PubMed

66. Sindrup SH, Brøsen K, Gram LF. Non-linear kinetics of imipramine in low and medium plasma level ranges. Ther D Monit 1990;12:445–9.10.1097/00007691-199009000-00007Search in Google Scholar PubMed

67. Brøsen K, Hansen MG, Kramer Nielsen K, Sindrup SH, Gram LF. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993;44:349–55.10.1007/BF00316471Search in Google Scholar

68. FDA Guideline. Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers. Available at: http://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm093664.htm (viewed 26 September 2014).Search in Google Scholar

69. Sindrup SH, Brøsen K, Hansen MG, Aaes-Jørgensen T, Overø KF, Gram LF. Pharmacokinetics of citalopram in relation to the sparteine and mephenytoin oxidation polymorphism. Ther Drug Monit 1993;15:11–7.10.1097/00007691-199302000-00002Search in Google Scholar

70. Noehr-Jensen L, Zwisler ST, Larsen F, Sindrup SH, Damkier P, Nielsen F, et al. Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur J Clin Pharmacol 2009;65:887–94.10.1007/s00228-009-0657-0Search in Google Scholar

71. Brøsen K, Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6 – The source of the sparteine/debrisoquine oxidation polymorphism. Br J Clin Pharmacol 1991;32:136–7.10.1111/j.1365-2125.1991.tb05630.xSearch in Google Scholar

72. Belpaire FM, Wijnant P, Temmerman A, Rasmussen BB, Brøsen K. The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors. Eur J Clin Pharmacol 1998;54:261–4.10.1007/s002280050456Search in Google Scholar

73. Stevens JC, Wrighton SA. Interaction of the enantiomers of fluoxetine and norfluoxetine with human liver cytochromes P450. J Pharmacol Exp Ther 1993;266:964–71.Search in Google Scholar

74. Fjordside L, Jeppesen U, Eap CB, Powell K, Baumann P, Brøsen K. The stereoselective metabolism of fluoxetine in poor and extensive metabolisers of sparteine. Pharmacogenetics 1999;9: 55–60.10.1097/00008571-199902000-00008Search in Google Scholar

75. Brøsen K, Skjelbo E, Rasmussen BB, Poulsen HE, Loft S. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993;45:1211–4.10.1016/0006-2952(93)90272-XSearch in Google Scholar

76. Rasmussen BB, Maënpää J, Pelkonen O, Loft S, Poulsen HE, Lykkesfeldt J, et al. Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol 1995;39:151–9.10.1111/j.1365-2125.1995.tb04422.xSearch in Google Scholar PubMed PubMed Central

77. Rasmussen BB, Nielsen TL, Brøsen K. Fluvoxamine is a potent inhibitor of the metabolism of caffeine in vitro. Pharmacol Toxicol 1998;83:240–5.10.1111/j.1600-0773.1998.tb01476.xSearch in Google Scholar PubMed

78. Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brøsen K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996;51:73–8.10.1007/s002280050163Search in Google Scholar PubMed

79. Larsen JT, Hansen LL, Brosen K. Tacrine is not an ideal probe drug for measuring CYP1A2 activity in vivo. Br J Clin Pharmacol 1999;48:663–8.10.1046/j.1365-2125.1999.00079.xSearch in Google Scholar

80. Rasmussen BB, Jeppesen U, Gaist D, Brøsen K. Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit 1997;19:56–62.10.1097/00007691-199702000-00010Search in Google Scholar

81. Rasmussen BB, Brix TH, Kyvik KO, Brøsen K. The interindividual differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 2002;12:473–8.10.1097/00008571-200208000-00008Search in Google Scholar

82. Petersen MS, Halling J, Damkier P, Nielsen F, Grandjean P, Weihe P, et al. Caffeine N3-demethylation (CYP1A2) in a population with an increased exposure to polychlorinated biphenyls. Eur J Clin Pharmacol 2006;62:1041–8.10.1007/s00228-006-0205-0Search in Google Scholar

83. Jürgens G, Lange KH, Reuther LØ, Rasmussen BB, Brøsen K, Christensen HR. Effect of growth hormone on hepatic cytochrome P450 activity in healthy elderly men. Clin Pharmacol Ther 2002;71:162–8.10.1067/mcp.2002.121373Search in Google Scholar

84. Gram LF, Brøsen K. Moclobemide treatment causes a substantial rise in the sparteine metabolic ratio. Br J Clin Pharmacol 1993;35:649–52.10.1111/j.1365-2125.1993.tb04196.xSearch in Google Scholar

85. Gram LF, Guentert TW, Grange S, Vistisen K, Brøsen K. Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2 A panel study. Clin Pharmacol Ther 1995;57:670–7.10.1016/0009-9236(95)90230-9Search in Google Scholar

86. Pert CB, Snyder SH. Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci USA 1973;70:2243–7.10.1073/pnas.70.8.2243Search in Google Scholar

87. Dayer P, Desmeules J, Leemann T, Striberni R. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochem Biophys Res Commun 1988;152:411–6.10.1016/S0006-291X(88)80729-0Search in Google Scholar

88. Sindrup SH, Brøsen K, Bjerring P, Arendt-Nielsen L, Larsen U, Angelo HR, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not in poor metabolizers of sparteine. Clin Pharmacol Ther 1990;48:686–93.10.1038/clpt.1990.212Search in Google Scholar PubMed

89. Poulsen L, Brøsen K, Arendt-Nielsen L, Gram LF, Elbæk K, Sindrup SH. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 1996;51:289–95.10.1007/s002280050200Search in Google Scholar

90. Sindrup SH, Arendt-Nielsen L, Brøsen K, Bjerring P, Angelo HR, Eriksen B, et al. The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol 1992;42:587–91.10.1007/BF00265920Search in Google Scholar

91. Sindrup SH, Hofmann U, Asmussen J, Mikus G, Brøsen K, Nielsen F, et al. Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake. Eur J Clin Pharmacol 1996;49:503–9.10.1007/BF00195938Search in Google Scholar

92. Emi Y, Tsunashima D, Ogawara K, Higaki K, Kimura T. Role of P-glycoprotein as a secretory mechanism in quinidine absorption from rat small intestine. J Pharm Sci 1998;87:295–9.10.1021/js970294vSearch in Google Scholar

93. Sindrup SH, Poulsen L, Brøsen K, Arendt-Nielsen L, Gram LF. Are poor metabolisers of sparteine/debrisoquine less pain tolerant than extensive metabolisers? Pain 1993;53:335–9.10.1016/0304-3959(93)90229-ISearch in Google Scholar

94. Paar WD, Frankus P, Dengler HJ. The metabolism of tramadol by human liver microsomes. Clin Invest 1992;70:708–10.10.1007/BF00180294Search in Google Scholar

95. Poulsen L, Arendt-Nielsen L, Brøsen K, Sindrup SH. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996;60:636–44.10.1016/S0009-9236(96)90211-8Search in Google Scholar

96. Enggaard TP, Poulsen L, Arendt-Nielsen L, Brøsen K, Ossig J, Sindrup SH. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 2006;102:146–50.10.1213/01.ane.0000189613.61910.32Search in Google Scholar PubMed

97. Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brøsen K. Paroxetine, a cytochrome P4502D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 2005;77:312–23.10.1016/j.clpt.2004.11.002Search in Google Scholar PubMed

98. Noehr-Jensen L, Zwisler ST, Damkier P, Larsen F, Brøsen K. Escitalopram is a weak inhibitor of the CYP2D6 catalysed O-demethylation of (+)-tramadol but does not reduce the hypoalgesic effect in experimental pain. Clin Pharmacol Ther 2009;86: 626–33.10.1038/clpt.2009.154Search in Google Scholar PubMed

99. Pedersen RS, Damkier P, Christensen MM, Brosen K. A cytochrome P450 phenotyping cocktail causing unexpected adverse reactions in female volunteers. Eur J Clin Pharmacol 2013;69:1997–9.10.1007/s00228-013-1561-1Search in Google Scholar

100. Pedersen RS, Damkier P, Brøsen K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol 2006;62:513–21.10.1007/s00228-006-0135-xSearch in Google Scholar

101. Nielsen A, Pedersen R, Noehr-Jensen L, Damkier P, Brøsen K. Two separate dose-dependent effects of paroxetine: mydriasis and inhibition of tramadol’s O-demethylation via CYP2D6. Eur J Clin Pharmacol 2010;66:655–60.10.1007/s00228-010-0803-8Search in Google Scholar

102. Halling J, Weihe P, Brøsen K. CYP2D6 polymorphism in relation to tramadol metabolism: a study of Faroese patients. Ther Drug Monit 2008;30:271–5.10.1097/FTD.0b013e3181666b2fSearch in Google Scholar

103. Zwisler ST, Mikkelsen S, Enggaard TP, Brøsen K, Sindrup SH. Impact of CYP2D6 genotype on postoperative intravenous oxycodone analgesia. Act Anaesth Scand 2010;54:232–40.10.1111/j.1399-6576.2009.02104.xSearch in Google Scholar

104. Zwisler ST, Enggaard TP, Noehr-Jensen L, Pedersen RS, Mikkelsen S, Nielsen F, et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Bas Clin Pharmacol Toxicol 2009;104:335–44.10.1111/j.1742-7843.2009.00378.xSearch in Google Scholar

105. Ward SA, Helsby NA, Skjelbo E, Brøsen K, Gram LF, Breckenridge AM. The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism – A panel study. Br J Clin Pharmacol 1991;31:689–92.10.1111/j.1365-2125.1991.tb05594.xSearch in Google Scholar

106. Brøsen K, Skjelbo E, Flachs H. Proguanil metabolism is determined by the mephenytoin oxidation polymorphism in Vietnamese living in Denmark. Br J Clin Pharmacol 1993;36:105–8.10.1111/j.1365-2125.1993.tb04204.xSearch in Google Scholar

107. Jeppesen U, Rasmussen BB, Brøsen K. Fluvoxamine inhibits the CYP2C19 catalysed bioactivation of chloroguanide. Clin Pharmacol Ther 1997;62:279–86.10.1016/S0009-9236(97)90030-8Search in Google Scholar

108. Rasmussen BB, Nielsen TL, Brøsen K. Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol 1998;54:735–40.10.1007/s002280050544Search in Google Scholar PubMed

109. Pedersen RS, Nielsen F, Stage TB, Vinholt PJ, El-Achwah AB, Damkier P, et al. CYP2C19*17 increases the clopidogrel-mediated platelet inhibition but does not alter the pharmacokinetics of the active metabolite of clopidogrel. Clin Exp Pharmacol Physiol 2014;41:870–8.10.1111/1440-1681.12297Search in Google Scholar PubMed

110. Pedersen RS, Noehr-Jensen L, Brosen K. Inhibitory effect of oral contraceptives on CYP2C19 activity is not significant in carriers of the CYP2C19*17 allele. Clin Exp Pharmacol Physiol 2013;40:683–8.10.1111/1440-1681.12153Search in Google Scholar

111. Bidstrup TB, Bjørnsdottir I, Sidelmann UG, Thomsen MS, Hansen KT. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 2003;56:305–14.10.1046/j.0306-5251.2003.01862.xSearch in Google Scholar PubMed PubMed Central

112. Bidstrup TB, Damkier P, Olsen AK, Ekblom M, Karlsson A, Brøsen K. The impact of CYP2C8 polymorphism and grapefruit juice on the pharmacokinetics of repaglinide. Br J Clin Pharmacol 2006;61:49–57.10.1111/j.1365-2125.2005.02516.xSearch in Google Scholar PubMed PubMed Central

113. Pedersen RS, Damkier P, Brøsen K. The effects of human CYP2C8 genotype and fluvoxamine on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol 2006;62:682–9.10.1111/j.1365-2125.2006.02706.xSearch in Google Scholar PubMed PubMed Central

114. Bergmann TK, Gréen H, Brasch-Andersen C, Mirza MR, Herrstedt J, Hølund B, et al. Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J Clin Pharmacol 2011;67:693–700.10.1007/s00228-011-1007-6Search in Google Scholar PubMed

115. Kobylecki CJ, Hansen T, Timm S, Wang A, Jakobsen KD, Sørensen HJ, et al. The impact of CYP2D6 and CYP2C19 polymorphisms on suicidal behavior and substance abuse disorder among patients with schizophrenia: a retrospective study. Ther Drug Monit 2008;30:265–70.10.1097/FTD.0b013e31817721d6Search in Google Scholar PubMed

116. Kobylecki CJ, Jakobsen KD, Hansen T, Jakobsen IV, Rasmussen HB, Werge T. CYP2D6 genotype predicts antipsychotic side effects in schizophrenia inpatients: a retrospective matched case-control study. Neuropsychobiology 2009;59:222–6.10.1159/000223734Search in Google Scholar PubMed

117. Jürgens G, Jacobsen CB, Rasmussen HB, Werge T, Nordentoft M, Andersen SE. Utility and adoption of CYP2D6 and CYP2C19 genotyping and its translation into psychiatric clinical practice. Acta Psychiatr Scand 2012;125:228–37.10.1111/j.1600-0447.2011.01802.xSearch in Google Scholar PubMed

118. Vangsted AJ, Søeby K, Klausen TW, Abildgaard N, Andersen NF, Gimsing P, et al. No influence of the polymorphisms CYP2C19 and CYP2D6 on the efficacy of cyclophosphamide, thalidomide, and bortezomib in patients with Multiple Myeloma. BMC Cancer 2010;10:404.10.1186/1471-2407-10-404Search in Google Scholar PubMed PubMed Central

119. Jùrgens G, Rasmussen HB, Werge T, Dalhoff K, Nordentoft M, Andersen SE. Does the medication pattern reflect the CYP2D6 genotype in patients with diagnoses within the schizophrenic spectrum? J Clin Psychopharmacol 2012;32:100–5.10.1097/JCP.0b013e31823f6b6aSearch in Google Scholar PubMed

120. Herbild L, Andersen SE, Werge T, Rasmussen HB, Jürgens G. Does pharmacogenetic testing for CYP450 2D6 and 2C19 among patients with diagnoses within the schizophrenic spectrum reduce treatment costs? Basic Clin Pharmacol Toxicol 2013;113:266–72.10.1111/bcpt.12093Search in Google Scholar PubMed

121. Brøsen K, Gram LF. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1989;36:537–47.10.1007/BF00637732Search in Google Scholar PubMed

122. Brosen K. Recent developments in hepatic drug oxidation. Implications for clinical pharmacokinetics. Clin Pharmacokinet 1990;18:220–39.10.2165/00003088-199018030-00004Search in Google Scholar PubMed

123. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 2013;94:317–23.10.1038/clpt.2013.105Search in Google Scholar PubMed PubMed Central

124. Province MA, Goetz MP, Brauch H, Flockhart DA, Hebert JM, Whaley R, et al. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations. International Tamoxifen Pharmacogenomics Consortium. Clin Pharmacol Ther 2014;95:216–27.10.1038/clpt.2013.186Search in Google Scholar PubMed PubMed Central

125. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013;369: 2294–303.10.1056/NEJMoa1311386Search in Google Scholar PubMed

126. FDA US Food and Drug administration. Table of Pharmacogenomic Biomarkers in Drug Labeling. Available from: http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Last viewed 28 Sep 2014.Search in Google Scholar

127. Guideline on the use of pharmacogenetic methodologies in the pharmacokinetic evaluation of medicinal products EMA/CHMP/37646/2009. Available from: www.ema.europa.eu. Accessed 28 September 2014.Search in Google Scholar

Received: 2014-10-8
Accepted: 2014-12-9
Published Online: 2015-1-23
Published in Print: 2015-9-1

©2015 by De Gruyter

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/dmdi-2014-0029/html
Scroll to top button