Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 21, 2014

Frequency of CYP450 enzyme gene polymorphisms in the Greek population: review of the literature, original findings and clinical significance

  • Georgia Ragia , Efstathia Giannakopoulou , Makrina Karaglani , Ioanna-Maria Karantza , Anna Tavridou and Vangelis G. Manolopoulos EMAIL logo

Abstract

The cytochrome P450 (CYP450) enzyme family is involved in the oxidative metabolism of many therapeutic drugs and various endogenous substrates. These enzymes are highly polymorphic. Prevalence of CYP450 enzyme gene polymorphisms vary among different populations and substantial inter- and intra-ethnic variability in frequency of CYP450 enzyme gene polymorphisms has been reported. This paper provides an overview and investigation of CYP450 genotypic and phenotypic reports published in the Greek population.


Corresponding author: Dr. Vangelis G. Manolopoulos, Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece, Phone/Fax: +30-2551-030523, E-mail: ; Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, Greece

Conflict of interest statement

Authors’ conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

References

1. Manolopoulos VG. Pharmacogenomics and adverse drug reactions in diagnostic and clinical practice. Clin Chem Lab Med 2007;45:801–14.10.1515/CCLM.2007.184Search in Google Scholar PubMed

2. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995;29:192–209.10.2165/00003088-199529030-00005Search in Google Scholar PubMed

3. Stathias V, Sotiris GR, Karagiannidis I, Bourikas G, Martinis G, Papazoglou D, et al. Exploring genomic structure differences and similarities between the Greek and European HapMap populations: implications for association studies. Ann Hum Genet 2012;76:472–83.10.1111/j.1469-1809.2012.00730.xSearch in Google Scholar PubMed

4. United States Board on Geographic Names, United States, Defense Mapping Agency. Gazetteer of conventional names: names approved by the United States Board on Geographic Names. 3rd ed. Washington DC, USA, 1989.Search in Google Scholar

5. Prentice AM, Rayco-Solon P, Moore SE. Insights from the developing world: thrifty genotypes and thrifty phenotypes. Proc Nutr Soc 2005;64:153–61.10.1079/PNS2005421Search in Google Scholar PubMed

6. Givens RC, Lin YS, Dowling AL, Thummel KE, Lamba JK, Schuetz EG, et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003;95:1297–300.10.1152/japplphysiol.00322.2003Search in Google Scholar PubMed

7. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet 2009;48:761–804.10.2165/11318070-000000000-00000Search in Google Scholar PubMed

8. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet 2009;48:689–723.10.2165/11318030-000000000-00000Search in Google Scholar PubMed

9. Neafsey P, Ginsberg G, Hattis D, Sonawane B. Genetic polymorphism in cytochrome P450 2D6 (CYP2D6): population distribution of CYP2D6 activity. J Toxicol Environ Health B Crit Rev 2009;12:334–61.10.1080/10937400903158342Search in Google Scholar PubMed

10. Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol 2007;21:419–26.10.1111/j.1472-8206.2007.00510.xSearch in Google Scholar PubMed

11. Ragia G, Arvanitidis KI, Tavridou A, Manolopoulos VG. Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece. Pharmacogenomics 2009;10:43–9.10.2217/14622416.10.1.43Search in Google Scholar PubMed

12. Kimiskidis VK, Niopas I, Firinidis PD, Kanaze FI, Gabrieli C, Kazis D, et al. Frequency distribution of dextromethorphan O-demethylation in a Greek population. Int J Clin Pharmacol Ther 2005;43:150–3.10.5414/CPP43150Search in Google Scholar

13. Manolopoulos VG, Ragia G, Alevizopoulos G. Pharmacokinetic interactions of selective serotonin reuptake inhibitors with other commonly prescribed drugs in the era of pharmacogenomics. Drug Metabol Drug Interact 2012;27:19–31.10.1515/dmdi-2011-0033Search in Google Scholar

14. Scordo MG, Caputi AP, D’Arrigo C, Fava G, Spina E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res 2004;50:195–200.10.1016/j.phrs.2004.01.004Search in Google Scholar

15. Provenzani A, Notarbartolo M, Labbozzetta M, Poma P, Vizzini G, Salis P, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. Int J Mol Med 2011;28:1093–102.10.3892/ijmm.2011.794Search in Google Scholar

16. Turolo S, Tirelli AS, Ferraresso M, Ghio L, Belingheri M, Groppali E, et al. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol Rep 2010;62:1159–69.10.1016/S1734-1140(10)70378-9Search in Google Scholar

17. Menoyo A, del Rio E, Baiget M. Characterization of variant alleles of cytochrome CYP2D6 in a Spanish population. Cell Biochem Funct 2006;24:381–5.10.1002/cbf.1258Search in Google Scholar PubMed

18. Garcia-Martin E, Martinez C, Ladero JM, Gamito FJ, Agundez JA. High frequency of mutations related to impaired CYP2C9 metabolism in a Caucasian population. Eur J Clin Pharmacol 2001;57:47–9.10.1007/s002280100264Search in Google Scholar PubMed

19. Dorado P, Berecz R, Norberto MJ, Yasar U, Dahl ML, LLerena A. CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur J Clin Pharmacol 2003;59:221–5.10.1007/s00228-003-0588-0Search in Google Scholar PubMed

20. Boso V, Herrero MJ, Buso E, Galan J, Almenar L, Sanchez-Lazaro I, et al. Genotype and allele frequencies of drug-metabolizing enzymes and drug transporter genes affecting immunosuppressants in the Spanish white population. Ther Drug Monit 2014;36:159–68.10.1097/FTD.0b013e3182a94e65Search in Google Scholar PubMed

21. Fontanellas A, Martinez-Fresno M, Garrido-Astray MC, Perucho T, Moran-Jimenez MJ, Garcia-Bravo M, et al. Smoking but not homozygosity for CYP1A2 g-163A allelic variant leads to earlier disease onset in patients with sporadic porphyria cutanea tarda. Exp Dermatol 2010;19:e326–8.10.1111/j.1600-0625.2009.01040.xSearch in Google Scholar PubMed

22. Serin A, Canan H, Alper B, Gulmen M. The frequencies of mutated alleles of CYP2D6 gene in a Turkish population. Forensic Sci Int 2012;222:332–4.10.1016/j.forsciint.2012.07.012Search in Google Scholar PubMed

23. Koseler A, Ilcol YO, Ulus IH. Frequency of mutated allele CYP2D6*4 in the Turkish population. Pharmacology 2007;79:203–6.10.1159/000100959Search in Google Scholar PubMed

24. Aynacioglu AS, Sachse C, Bozkurt A, Kortunay S, Nacak M, Schroder T, et al. Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther 1999;66:185–92.10.1053/cp.1999.v66.100072001Search in Google Scholar PubMed

25. Gumus E, Karaca O, Babaoglu MO, Baysoy G, Balamtekin N, Demir H, et al. Evaluation of lansoprazole as a probe for assessing cytochrome P450 2C19 activity and genotype-phenotype correlation in childhood. Eur J Clin Pharmacol 2012;68: 629–36.10.1007/s00228-011-1151-zSearch in Google Scholar PubMed

26. Aynacioglu AS, Brockmoller J, Bauer S, Sachse C, Guzelbey P, Ongen Z, et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 1999;48:409–15.10.1046/j.1365-2125.1999.00012.xSearch in Google Scholar PubMed PubMed Central

27. Bilgen T, Tosun O, Luleci G, Keser I. Frequencies of four genetic polymorphisms in the CYP1A2 gene in Turkish population. Genetika 2008;44:1133–6.Search in Google Scholar

28. Bozina N, Granic P, Lalic Z, Tramisak I, Lovric M, Stavljenic-Rukavina A. Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population. Croat Med J 2003;44:425–8.Search in Google Scholar

29. Verhoef TI, Ragia G, de Boer A, Barallon R, Kolovou G, Kolovou V, et al. A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. N Engl J Med 2013;369:2304–12.10.1056/NEJMoa1311388Search in Google Scholar PubMed

30. Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013;14:47–62.10.2217/pgs.12.187Search in Google Scholar PubMed

31. Tamminga WJ, Wemer J, Oosterhuis B, de Zeeuw RA, de Leij LF, Jonkman JH. The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers. Eur J Clin Pharmacol 2001;57:717–22.10.1007/s002280100359Search in Google Scholar PubMed

32. Harmsze AM, van Werkum JW, Hackeng CM, Ruven HJ, Kelder JC, Bouman HJ, et al. The influence of CYP2C19*2 and *17 on on-treatment platelet reactivity and bleeding events in patients undergoing elective coronary stenting. Pharmacogenet Genomics 2012;22:169–75.10.1097/FPC.0b013e32834ff6e3Search in Google Scholar PubMed

33. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2002;48:1668–71.10.1093/clinchem/48.10.1668Search in Google Scholar

34. Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 2010;121:512–8.10.1161/CIRCULATIONAHA.109.885194Search in Google Scholar PubMed

35. Justenhoven C, Hamann U, Pierl CB, Baisch C, Harth V, Rabstein S, et al. CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat 2009;115:391–6.10.1007/s10549-008-0076-4Search in Google Scholar PubMed

36. Burian M, Grosch S, Tegeder I, Geisslinger G. Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. Br J Clin Pharmacol 2002;54:518–21.10.1046/j.1365-2125.2002.01693.xSearch in Google Scholar PubMed PubMed Central

37. Dally H, Edler L, Jager B, Schmezer P, Spiegelhalder B, Dienemann H, et al. The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 2003;13:607–18.10.1097/00008571-200310000-00004Search in Google Scholar PubMed

38. Sachse C, Brockmoller J, Bauer S, Roots I. Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999;47:445–9.10.1046/j.1365-2125.1999.00898.xSearch in Google Scholar PubMed PubMed Central

39. Pedersen RS, Brasch-Andersen C, Sim SC, Bergmann TK, Halling J, Petersen MS, et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol 2010;66:1199–205.10.1007/s00228-010-0864-8Search in Google Scholar PubMed

40. Rasmussen JO, Christensen M, Svendsen JM, Skausig O, Hansen EL, Nielsen KA. CYP2D6 gene test in psychiatric patients and healthy volunteers. Scand J Clin Lab Invest 2006;66:129–36.10.1080/00365510500469702Search in Google Scholar PubMed

41. Bathum L, Hansen TS, Horder M, Brosen K. A dual label oligonucleotide ligation assay for detection of the CYP2C19*1, CYP2C19*2, and CYP2C19*3 alleles involving time-resolved fluorometry. Ther Drug Monit 1998;20:1–6.10.1097/00007691-199802000-00001Search in Google Scholar PubMed

42. Borst L, Wallerek S, Dalhoff K, Rasmussen KK, Wesenberg F, Wehner PS, et al. The impact of CYP3A5*3 on risk and prognosis in childhood acute lymphoblastic leukemia. Eur J Haematol 2011;86:477–83.10.1111/j.1600-0609.2011.01608.xSearch in Google Scholar PubMed

43. Christiansen L, Bygum A, Jensen A, Thomsen K, Brandrup F, Horder M, et al. Association between CYP1A2 polymorphism and susceptibility to porphyria cutanea tarda. Hum Genet 2000;107:612–4.10.1007/s004390000415Search in Google Scholar PubMed

44. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002;53:111–22.10.1046/j.0306-5251.2001.01548.xSearch in Google Scholar PubMed PubMed Central

45. Yamada H, Dahl ML, Lannfelt L, Viitanen M, Winblad B, Sjoqvist F. CYP2D6 and CYP2C19 genotypes in an elderly Swedish population. Eur J Clin Pharmacol 1998;54:479–81.10.1007/s002280050497Search in Google Scholar PubMed

46. Ramsjo M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh HK, Bertilsson L. CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol 2010;66:871–7.10.1007/s00228-010-0835-0Search in Google Scholar PubMed

47. Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999;254:628–31.10.1006/bbrc.1998.9992Search in Google Scholar PubMed

48. Mirghani RA, Sayi J, Aklillu E, Allqvist A, Jande M, Wennerholm A, et al. CYP3A5 genotype has significant effect on quinine 3-hydroxylation in Tanzanians, who have lower total CYP3A activity than a Swedish population. Pharmacogenet Genomics 2006;16:637–45.10.1097/01.fpc.0000230411.89973.1bSearch in Google Scholar PubMed

49. Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 2007;63:537–46.10.1007/s00228-007-0288-2Search in Google Scholar PubMed

50. Rideg O, Haber A, Botz L, Szucs F, Varnai R, Miseta A, et al. Pilot study for the characterization of pharmacogenetically relevant CYP2D6, CYP2C19 and ABCB1 gene polymorphisms in the Hungarian population. Cell Biochem Funct 2011;29:562–8.10.1002/cbf.1788Search in Google Scholar PubMed

51. Sipeky C, Weber A, Szabo M, Melegh BI, Janicsek I, Tarlos G, et al. High prevalence of CYP2C19*2 allele in Roma samples: study on Roma and Hungarian population samples with review of the literature. Mol Biol Rep 2013;40:4727–35.10.1007/s11033-013-2569-4Search in Google Scholar PubMed

52. Sipeky C, Lakner L, Szabo M, Takacs I, Tamasi V, Polgar N, et al. Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies. Blood Cells Mol Dis 2009;43:239–42.10.1016/j.bcmd.2009.05.005Search in Google Scholar PubMed

53. Kristiansen W, Haugen TB, Witczak O, Andersen JM, Fossa SD, Aschim EL. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility. Int J Androl 2011;34:77–83.10.1111/j.1365-2605.2010.01057.xSearch in Google Scholar PubMed

54. Kersten H, Wyller TB, Molden E. Association between inherited CYP2D6/2C19 phenotypes and anticholinergic measures in elderly patients using anticholinergic drugs. Ther Drug Monit 2014;36:125–30.10.1097/FTD.0b013e31829da990Search in Google Scholar PubMed

55. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmoller J, Frotschl R, Kopke K, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 2003;59:303–12.10.1007/s00228-003-0606-2Search in Google Scholar PubMed

56. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005;5:6–13.10.1038/sj.tpj.6500285Search in Google Scholar PubMed

57. http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020839s044lbl.pdf.Search in Google Scholar

58. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 2013;94:317–23.10.1038/clpt.2013.105Search in Google Scholar PubMed PubMed Central

59. Kassimis G, Davlouros P, Xanthopoulou I, Stavrou EF, Athanassiadou A, Alexopoulos D. CYP2C19*2 and other genetic variants affecting platelet response to clopidogrel in patients undergoing percutaneous coronary intervention. Thromb Res 2012;129:441–6.10.1016/j.thromres.2011.07.022Search in Google Scholar PubMed

60. Tsantes AE, Ikonomidis I, Papadakis I, Bonovas S, Gialeraki A, Kottaridi C, et al. Impact of the proton pump inhibitors and CYP2C19*2 polymorphism on platelet response to clopidogrel as assessed by four platelet function assays. Thromb Res 2013;132:e105–11.10.1016/j.thromres.2013.06.015Search in Google Scholar PubMed

61. Tousoulis D, Siasos G, Zaromitidou M, Oikonomou E, Maniatis K, Kioufis S, et al. The impact of CYP2C19 genotype on cardiovascular events and platelet reactivity in patients with coronary artery disease receiving clopidogrel. Int J Cardiol 2013;168:1594–6.10.1016/j.ijcard.2013.01.040Search in Google Scholar PubMed

62. Hirota T, Eguchi S, Ieiri I. Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab Pharmacokinet 2013;28:28–37.10.2133/dmpk.DMPK-12-RV-085Search in Google Scholar PubMed

63. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994;4:39–42.10.1097/00008571-199402000-00005Search in Google Scholar PubMed

64. Haining RL, Hunter AP, Veronese ME, Trager WF, Rettie AE. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996;333:447–58.10.1006/abbi.1996.0414Search in Google Scholar PubMed

65. Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics 2010;11:493–6.10.2217/pgs.10.31Search in Google Scholar PubMed

66. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013;369:2294–303.10.1056/NEJMoa1311386Search in Google Scholar PubMed

67. Markatos CN, Grouzi E, Politou M, Gialeraki A, Merkouri E, Panagou I, et al. VKORC1 and CYP2C9 allelic variants influence acenocoumarol dose requirements in Greek patients. Pharmacogenomics 2008;9:1631–8.10.2217/14622416.9.11.1631Search in Google Scholar PubMed

68. Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics 2011;12:1161–91.10.2217/pgs.11.65Search in Google Scholar PubMed

69. Ragia G, Marousi S, Ellul J, Manolopoulos VG, Tavridou A. Association of functional VKORC1 promoter polymorphism with occurrence and clinical aspects of ischemic stroke in a Greek population. Disease Markers 2013;35:641–6.10.1155/2013/769574Search in Google Scholar PubMed PubMed Central

70. Ragia G, Petridis I, Tavridou A, Christakidis D, Manolopoulos VG. Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics 2009;10:1781–7.10.2217/pgs.09.96Search in Google Scholar PubMed

71. Ragia G, Tavridou A, Elens L, Van Schaik R, Manolopoulos V. CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 type 2 diabetic patients treated with sulfonylureas. Exp Clin Endocrinol Diabetes 2014;122:60–3.10.1055/s-0033-1361097Search in Google Scholar PubMed

72. Ragia G, Tavridou A, Petridis I, Manolopoulos VG. Association of KCNJ11 E23K gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract 2012;98:119–24.10.1016/j.diabres.2012.04.017Search in Google Scholar PubMed

73. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001;27:383–91.10.1038/86882Search in Google Scholar PubMed

74. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004;75:1059–69.10.1086/426406Search in Google Scholar PubMed PubMed Central

75. Pemberton TJ, Mehta NU, Witonsky D, Di Rienzo A, Allayee H, Conti DV, et al. Prevalence of common disease-associated variants in Asian Indians. BMC Genet 2008;9:13.10.1186/1471-2156-9-13Search in Google Scholar PubMed PubMed Central

76. Bains RK, Kovacevic M, Plaster CA, Tarekegn A, Bekele E, Bradman NN, et al. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genet 2013;14:34.10.1186/1471-2156-14-34Search in Google Scholar PubMed PubMed Central

77. Bochud M, Eap CB, Elston RC, Bovet P, Maillard M, Schild L, et al. Association of CYP3A5 genotypes with blood pressure and renal function in African families. J Hypertens 2006;24:923–9.10.1097/01.hjh.0000222763.84605.4aSearch in Google Scholar PubMed

78. Katsakiori PF, Papapetrou EP, Sakellaropoulos GC, Goumenos DS, Nikiforidis GC, Flordellis CS. Factors affecting the long-term response to tacrolimus in renal transplant patients: pharmacokinetic and pharmacogenetic approach. Int J Med Sci 2010;7:94–100.10.7150/ijms.7.94Search in Google Scholar PubMed PubMed Central

79. Katsakiori PF, Papapetrou EP, Goumenos DS, Nikiforidis GC, Flordellis CS. Tacrolimus and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors: an interaction study in CYP3A5 non-expressors, renal transplant recipients. Indian J Pharmacol 2011;43:385–8.10.4103/0253-7613.83106Search in Google Scholar PubMed PubMed Central

80. Kivisto KT, Niemi M, Schaeffeler E, Pitkala K, Tilvis R, Fromm MF, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004;14:523–5.10.1097/01.fpc.0000114762.78957.a5Search in Google Scholar PubMed

81. Kim KA, Park PW, Lee OJ, Kang DK, Park JY. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol 2007;47:87–93.10.1177/0091270006295063Search in Google Scholar PubMed

82. Li YP, Zhang LR, Jia M, Hu XJ. CYP3AP1*3 allele is associated with lipid-lowering efficacy of simvastatin and atorvastatin in Chinese women. J Clin Pharmacol 2011;51:181–8.10.1177/0091270010370589Search in Google Scholar PubMed

83. Kolovou G, Ragia G, Kolovou V, Mihas C, Katsiki N, Vasiliadis I, et al. Impact of CYP3A5 gene polymorphism on efficacy of simvastatin. The Open Cardiovasc Med J 2014;8:12–7.10.2174/1874192401408010012Search in Google Scholar PubMed PubMed Central

84. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011;11:274–86.10.1038/tpj.2010.28Search in Google Scholar PubMed PubMed Central

85. Okubo M, Murayama N, Shimizu M, Shimada T, Guengerich FP, Yamazaki H. The CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci 2013;38:349–54.10.2131/jts.38.349Search in Google Scholar

86. Zhou SF, Yang LP, Zhou ZW, Liu YH, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. Aaps J 2009;11:481–94.10.1208/s12248-009-9127-ySearch in Google Scholar

87. Sim SC. CYP1A2*1E [corrected] contains the -163C>A substitution and is highly inducible. Pharmacogenet Genomics 2013;23:104–5.10.1097/FPC.0b013e32835ccc76Search in Google Scholar

88. Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010;42:268–354.10.3109/03602530903286476Search in Google Scholar

89. Jernstrom H, Henningson M, Johansson U, Olsson H. Coffee intake and CYP1A2*1F genotype predict breast volume in young women: implications for breast cancer. Br J Cancer 2008;99:1534–8.10.1038/sj.bjc.6604687Search in Google Scholar

90. Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction. J Med Genet 2004;41:758–62.10.1136/jmg.2004.022012Search in Google Scholar

91. Bozikas VP, Papakosta M, Niopas I, Karavatos A, Mirtsou-Fidani V. Smoking impact on CYP1A2 activity in a group of patients with schizophrenia. Eur Neuropsychopharmacol 2004;14:39–44.10.1016/S0924-977X(03)00061-0Search in Google Scholar

92. Begas E, Kouvaras E, Tsakalof A, Papakosta S, Asprodini EK. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed Chromatogr 2007;21:190–200.10.1002/bmc.736Search in Google Scholar PubMed

93. Mastrogianni O, Gbandi E, Orphanidis A, Raikos N, Goutziomitrou E, Kolibianakis EM, et al. Association of the CYP2B6 c.516G>T polymorphism with high blood propofol concentrations in women from northern Greece. Drug Metab Pharmacokinet 2013 DOI http://dx.doi.org/10.2133/dmpk.DMPK-13-NT-092.10.2133/dmpk.DMPK-13-NT-092Search in Google Scholar PubMed

94. Pliarchopoulou K, Voutsinas G, Papaxoinis G, Florou K, Skondra M, Kostaki K, et al. Correlation of CYP1A1, GSTP1 and GSTM1 gene polymorphisms and lung cancer risk among smokers. Oncol Lett 2012;3:1301–6.10.3892/ol.2012.665Search in Google Scholar PubMed PubMed Central

95. Agorastos T, Papadopoulos N, Lambropoulos AF, Chrisafi S, Mikos T, Goulis DG, et al. Glutathione-S-transferase M1 and T1 and cytochrome P1A1 genetic polymorphisms and susceptibility to cervical intraepithelial neoplasia in Greek women. Eur J Cancer Prev 2007;16:498–504.10.1097/01.cej.0000243859.99265.92Search in Google Scholar

96. Dialyna IA, Arvanitis DA, Spandidos DA. Genetic polymorphisms and transcriptional pattern analysis of CYP1A1, AhR, GSTM1, GSTP1 and GSTT1 genes in breast cancer. Int J Mol Med 2001;8:79–87.10.3892/ijmm.8.1.79Search in Google Scholar

97. Tsatsakis AM, Androutsopoulos VP, Zafiropoulos A, Babatsikou F, Alegakis T, Dialyna I, et al. Associations of xenobiotic-metabolizing enzyme genotypes PON1Q192R, PON1L55M and CYP1A1*2A MspI with pathological symptoms of a rural population in south Greece. Xenobiotica 2011;41:914–25.10.3109/00498254.2011.590545Search in Google Scholar

98. Tsatsakis AM, Zafiropoulos A, Tzatzarakis MN, Tzanakakis GN, Kafatos A. Relation of PON1 and CYP1A1 genetic polymorphisms to clinical findings in a cross-sectional study of a Greek rural population professionally exposed to pesticides. Toxicol Lett 2009;186:66–72.10.1016/j.toxlet.2008.10.018Search in Google Scholar

99. Arvanitis DA, Koumantakis GE, Goumenou AG, Matalliotakis IM, Koumantakis EE, Spandidos DA. CYP1A1, CYP19, and GSTM1 polymorphisms increase the risk of endometriosis. Fertil Steril 2003;79(Suppl 1):S702–9.10.1016/S0015-0282(02)04817-3Search in Google Scholar

100. Diamanti-Kandarakis E, Bartzis MI, Bergiele AT, Tsianateli TC, Kouli CR. Microsatellite polymorphism (tttta)(n) at -528 base pairs of gene CYP11alpha influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil Steril 2000;73:735–41.10.1016/S0015-0282(99)00628-7Search in Google Scholar

101. Androulakis E, Tousoulis D, Papageorgiou N, Miliou A, Chatzistamatiou E, Moustakas G, et al. Effects of the C-344T aldosterone synthase gene variant on preclinical vascular alterations in essential hypertension. Int J Cardiol 2013;168:1605–6.10.1016/j.ijcard.2013.01.035Search in Google Scholar

102. Litridis I, Kapnoulas N, Natisvili T, Agiannitopoulos K, Peraki O, Ntostis P, et al. Genetic variation in the CYP17 gene and recurrent spontaneous abortions. Arch Gynecol Obstet 2011;283:289–93.10.1007/s00404-009-1348-xSearch in Google Scholar

103. Diamanti-Kandarakis E, Bartzis MI, Zapanti ED, Spina GG, Filandra FA, Tsianateli TC, et al. Polymorphism T-->C (-34 bp) of gene CYP17 promoter in Greek patients with polycystic ovary syndrome. Fertil Steril 1999;71:431–5.10.1016/S0015-0282(98)00512-3Search in Google Scholar

104. Litos IK, Emmanouilidou E, Glynou KM, Laios E, Ioannou PC, Christopoulos TK, et al. Rapid genotyping of CYP2D6, CYP2C19 and TPMT polymorphisms by primer extension reaction in a dipstick format. Anal Bioanal Chem 2007;389: 1849–57.10.1007/s00216-007-1593-4Search in Google Scholar PubMed

105. Toubanaki DK, Christopoulos TK, Ioannou PC, Gravanis A. Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis. Hum Mutat 2008;29:1071–8.10.1002/humu.20774Search in Google Scholar PubMed

106. Toubanaki DK, Christopoulos TK, Ioannou PC, Gravanis A. Visual genotyping of SNPs of drug-metabolizing enzymes by tetra-primer PCR coupled with a dry-reagent DNA biosensor. Pharmacogenomics 2009;10:495–504.10.2217/14622416.10.3.495Search in Google Scholar PubMed

Received: 2014-1-24
Accepted: 2014-3-26
Published Online: 2014-4-21
Published in Print: 2014-12-1

©2014 by De Gruyter

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1515/dmdi-2014-0006/html
Scroll to top button