Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 11, 2014

Character rigidity for special linear groups

  • Jesse Peterson EMAIL logo and Andreas Thom

Abstract

In this paper we study characters on special linear groups SLn(R), where R is either an infinite field or the localization of an order in a number field. We give several applications to the theory of measure-preserving actions, operator-algebraic superrigidity, and almost homomorphisms.

Award Identifier / Grant number: DMS-1201565

Award Identifier / Grant number: 277728

Funding statement: J. Peterson is supported by NSF Grant DMS-1201565, and a grant from the Alfred P. Sloan Foundation. A. Thom is supported by ERC Grant 277728.

We want to thank Miklós Abért for motivating discussions and sharing a preliminary version of [‘A strong simplicity property for projective special linear groups’, preprint] with us, and Tim Netzer for discussions about Theorem 5.2. A. Thom wants to thank Uri Bader for interesting discussions about a first version of this paper. This work was started when J. Peterson visited Universität Leipzig in September 2012, he is grateful for their hospitality. We thank the unknown referee for careful proof-reading and many helpful comments.

References

[1] Abért M., Avni N. and Wilson J., A strong simplicity property for projective special linear groups, personal communication. Search in Google Scholar

[2] Abért M., Glasner Y. and Virag B., Kesten’s theorem for invariant random subgroups, preprint 2012, http://arxiv.org/abs/1201.3399. 10.1215/00127094-2410064Search in Google Scholar

[3] Bekka B., Operator-algebraic superrigidity for SLn(), n3, Invent. Math. 169 (2007), no. 2, 401–425. 10.1007/s00222-007-0050-5Search in Google Scholar

[4] Burger M., Ozawa N. and Thom A., On Ulam stability, Israel J. Math. 193 (2013), 109–129. 10.1007/s11856-012-0050-zSearch in Google Scholar

[5] Choda M., Group factors of the Haagerup type, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 174–177. 10.3792/pjaa.59.174Search in Google Scholar

[6] Cimpric J., Netzer T. and Marschall M., Closures of quadratic modules, Israel J. Math. 183 (2011), no. 1, 445–474. 10.1007/s11856-011-0056-ySearch in Google Scholar

[7] Connes A., Correspondences, handwritten notes 1980. 10.1111/j.1540-4781.1921.tb06686.xSearch in Google Scholar

[8] Connes A. and Jones V., Property T for von Neumann algebras, Bull. Lond. Math. Soc. 17 (1985), 57–62. 10.1112/blms/17.1.57Search in Google Scholar

[9] Creutz D. and Peterson J., Stabilizers of ergodic actions of lattices and commensurators, preprint 2012. 10.1090/tran/6836Search in Google Scholar

[10] Dixmier J., Von Neumann algebras, North-Holland Math. Lib. 27, North-Holland, Amsterdam 1981. Search in Google Scholar

[11] Dudko A. and Medynets K., Finite factor representations of Higman–Thompson groups, Groups Geom. Dyn., to appear. 10.4171/GGD/230Search in Google Scholar

[12] Dye H. A., On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), no. 1, 119–159. 10.2307/2372852Search in Google Scholar

[13] Dye H. A., On the ergodic mixing theorem, Trans. Amer. Math. Soc. 118 (1965), 123–130. 10.1090/S0002-9947-1965-0174705-8Search in Google Scholar

[14] Feldman J. and Moore C. C., Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325–259. 10.1090/S0002-9947-1977-0578730-2Search in Google Scholar

[15] Gamm C., ε-representations of groups and Ulam stability, Master thesis, Georg-August-Universität Göttingen, Göttingen 2011. Search in Google Scholar

[16] Gluck D., Sharper character value estimates for groups of Lie type, J. Algebra 174 (1995), 229–266. 10.1006/jabr.1995.1127Search in Google Scholar

[17] Grunewald F. and Schwermer J., Free nonabelian quotients of SL2 over orders of imaginary quadratic numberfields, J. Algebra 69 (1981), 298–304. 10.1016/0021-8693(81)90206-4Search in Google Scholar

[18] Haagerup U., An example of a non-nuclear C*-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), 279–293. 10.1007/BF01410082Search in Google Scholar

[19] Harish-Chandra , On the characters of a semisimple Lie group, Bull. Amer. Math. Soc. 61 (1955), no. 5, 389–396. 10.1090/S0002-9904-1955-09935-XSearch in Google Scholar

[20] Kadison R. V., A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. (2) 56 (1952), 494–503. 10.2307/1969657Search in Google Scholar

[21] Kirillov A. A., Positive definite functions on a group of matrices with elements from a discrete field, Sov. Math. Dokl. 6 (1965), 707–709. Search in Google Scholar

[22] Margulis G. A., Non-uniform lattices in semisimple algebraic groups, Lie groups and their representations (Budapest 1971), Wiley, New York (1975), 371–553. Search in Google Scholar

[23] Morris D. W., Bounded generation of SL(n,A) (after D. Carter, G. Keller, and E. Paige), New York J. Math. 13 (2007), 383–421. Search in Google Scholar

[24] Mostow G. D., Strongrigidity of locally symmetric spaces, Ann. of Math. Stud. 78, Princeton University Press, Princeton 1973. 10.1515/9781400881833Search in Google Scholar

[25] von Neumann J. and Wigner E., Minimally almost periodic groups, Ann. of Math. (2) 41 (1940), 746–750. 10.1007/978-3-662-02781-3_23Search in Google Scholar

[26] Nevo A. and Zimmer R., Homogenous projection factors for the action of semi-simple Lie groups, Invent. Math. 138 (1999), 229–252. 10.1007/s002220050377Search in Google Scholar

[27] Ovcinnikov S. V., Positive definite functions on Chevalley groups, Funct. Anal. Appl. 5 (1971), 79–80. 10.1007/BF01075858Search in Google Scholar

[28] Ozawa N., Quasi-homomorphism rigidity with non-commutative targets, J. reine angew. Math. 655 (2011), 89–104. 10.1515/crelle.2011.034Search in Google Scholar

[29] Popa S., Orthogonal pairs of -subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), no. 2, 253–268. Search in Google Scholar

[30] Popa S., Correspondences, INCREST Preprint 56/1986, 1986. 10.1177/104990918600300403Search in Google Scholar

[31] Popa S., On a class of type II1 factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), 809–899. 10.4007/annals.2006.163.809Search in Google Scholar

[32] Prasad G., Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973), 255–286. 10.1007/BF01418789Search in Google Scholar

[33] Robertson A. G., Property (T) for II1 factors and unitary representations of Kazhdan groups, Math. Ann. 296 (1993), 547–555. 10.1007/BF01445119Search in Google Scholar

[34] Segal I. and von Neumann J., A theorem on unitary representations of semi-simple Lie groups, Ann. of Math. (2) 52 (1950), 509–517. 10.2307/1969429Search in Google Scholar

[35] Skudlarek H.-L., Die unzerlegbaren Charaktere einiger diskreter Gruppen, Math. Ann. 223 (1976), 213–231. 10.1007/BF01360954Search in Google Scholar

[36] Stuck G. and Zimmer R., Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. (2) 139 (1994), no. 3, 723–747. 10.2307/2118577Search in Google Scholar

[37] Takesaki M., Theory of operator algebras. I, Encyclopaedia Math. Sci. 124, Springer-Verlag, Berlin 2002. 10.1007/978-3-662-10453-8Search in Google Scholar

[38] Thoma E., Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40–61. 10.1007/BF01114877Search in Google Scholar

[39] Thoma E., Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111–138. 10.1007/BF01361180Search in Google Scholar

[40] Thoma E., Invariante positiv definite Klassenfunktionen und ergodische Maße, Math. Ann. 162 (1965/1966), 172–189. 10.1007/978-3-642-85997-7_8Search in Google Scholar

[41] Umegaki H., Conditional expectation in an operator algebra, Tôhoku Math. J. (2) 6 (1954), 177–181. 10.2748/tmj/1178245177Search in Google Scholar

[42] Vershik A. M., Nonfree actions of countable groups and their characters, J. Math. Sci. (N. Y.) 174 (2011), no. 1, 1–6. 10.1007/s10958-011-0273-2Search in Google Scholar

[43] Vershik A. M. and Kerov S. V., Characters and factor representations of the infinite symmetric group, Sov. Math. Dokl. 23 (1981), 389–392. Search in Google Scholar

[44] Voiculescu D., Représentations factorielles de type II1 de U(), J. Math. Pures Appl. (9) 55 (1976), 1–20. Search in Google Scholar

Received: 2013-6-3
Revised: 2014-2-4
Published Online: 2014-3-11
Published in Print: 2016-7-1

© 2016 by De Gruyter

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.1515/crelle-2014-0009/html
Scroll to top button