Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 20, 2018

Equilibrated Stress Tensor Reconstruction and A Posteriori Error Estimation for Nonlinear Elasticity

  • Michele Botti EMAIL logo and Rita Riedlbeck

Abstract

We consider hyperelastic problems and their numerical solution using a conforming finite element discretization and iterative linearization algorithms. For these problems, we present equilibrated, weakly symmetric, H ( div ) -conforming stress tensor reconstructions, obtained from local problems on patches around vertices using the Arnold–Falk–Winther finite element spaces. We distinguish two stress reconstructions: one for the discrete stress and one representing the linearization error. The reconstructions are independent of the mechanical behavior law. Based on these stress tensor reconstructions, we derive an a posteriori error estimate distinguishing the discretization, linearization, and quadrature error estimates, and propose an adaptive algorithm balancing these different error sources. We prove the efficiency of the estimate, and confirm it on a numerical test with an analytical solution. We then apply the adaptive algorithm to a more application-oriented test, considering the Hencky–Mises and an isotropic damage model.

Award Identifier / Grant number: 2014-2-006

Award Identifier / Grant number: RP18DRP019

Funding statement: The work of Michele Botti was partially supported by Labex NUMEV (ANR-10-LABX-20) ref. 2014-2-006 and by the Bureau de Recherches Géologiques et Minières (Project RP18DRP019).

Acknowledgements

The authors would like to thank Wietse Boon for interesting discussions about the Arnold–Falk–Winther spaces during the IHP quarter on Numerical Methods for PDEs in Paris. The authors also thank Kyrylo Kazymzrenko for providing his expertise on solid mechanics and for his help for designing the numerical test cases.

References

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (New York), Wiley-Interscience, New York, (2000). 10.1002/9781118032824Search in Google Scholar

[2] M. Ainsworth and R. Rankin, Guaranteed computable error bounds for conforming and nonconforming finite element analysis in planar elasticity, Internat. J. Numer. Methods Engrg. 82 (2010), 1114–1157. 10.1002/nme.2799Search in Google Scholar

[3] T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp. 64 (1995), no. 211, 943–972. 10.2307/2153478Search in Google Scholar

[4] D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp. 76 (2007), 1699–1723. 10.1090/S0025-5718-07-01998-9Search in Google Scholar

[5] D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), 401–419. 10.1007/s002110100348Search in Google Scholar

[6] A. M. Barrientos, N. G. Gatica and P. E. Stephan, A mixed finite element method for nonlinear elasticity: Two-fold saddle point approach and a-posteriori error estimate, Numer. Math. 91 (2002), no. 2, 197–222. 10.1007/s002110100337Search in Google Scholar

[7] M. Botti, D. A. Di Pietro and P. Sochala, A hybrid high-order method for nonlinear elasticity, SIAM J. Numer. Anal. 55 (2017), no. 6, 2687–2717. 10.1137/16M1105943Search in Google Scholar

[8] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p-robust, Comput. Methods Appl. Mech. Engrg. 198 (2009), 1189–1197. 10.1016/j.cma.2008.12.010Search in Google Scholar

[9] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651–672. 10.1090/S0025-5718-07-02080-7Search in Google Scholar

[10] F. Brezzi, J. Douglas and L. D. Marini, Recent results on mixed finite element methods for second order elliptic problems, Vistas in Applied Mathematics. Numerical Analysis, Atmospheric Sciences, Immunology, Optimization Software Inc., New York (1986), 25–43. Search in Google Scholar

[11] M. Čermák, F. Hecht, Z. Tang and M. Vohralík, Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the stokes problem, Numer. Math. 138 (2017), no. 4, 1027–1065. 10.1007/s00211-017-0925-3Search in Google Scholar

[12] M. Cervera, M. Chiumenti and R. Codina, Mixed stabilized finite element methods in nonlinear solid mechanics: Part II: Strain localization, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 37–40, 2571–2589. 10.1016/j.cma.2010.04.005Search in Google Scholar

[13] L. Chamoin, P. Ladevèze and F. Pled, On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples, Internat. J. Numer. Methods Engrg. 88 (2011), no. 5, 409–441. 10.1002/nme.3180Search in Google Scholar

[14] L. Chamoin, P. Ladevèze and F. Pled, An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress field in finite element analysis, Comput. Mech. 49 (2012), 357–378. 10.1007/s00466-011-0645-ySearch in Google Scholar

[15] M. Destrade and R. W. Ogden, On the third- and fourth-order constants of incompressible isotropic elasticity, J. Acoust. Soc. Amer. 128 (2010), no. 6, 3334–3343. 10.1121/1.3505102Search in Google Scholar PubMed

[16] P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Math. Comp. 68 (1999), no. 228, 1379–1396. 10.1090/S0025-5718-99-01093-5Search in Google Scholar

[17] P. Dörsek and J. Melenk, Symmetry-free, p-robust equilibrated error indication for the hp-version of the FEM in nearly incompressible linear elasticity, Comput. Methods Appl. Math. 13 (2013), 291–304. 10.1515/cmam-2013-0007Search in Google Scholar

[18] L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), 2782–2795. 10.1016/j.cma.2010.03.024Search in Google Scholar

[19] A. Ern and M. Vohralík, A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM J. Numer. Anal. 48 (2010), no. 1, 198–223. 10.1137/090759008Search in Google Scholar

[20] A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), no. 4, A1761–A1791. 10.1137/120896918Search in Google Scholar

[21] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal. 53 (2015), no. 2, 1058–1081. 10.1137/130950100Search in Google Scholar

[22] A. Ern and M. Vohralík, Broken stable H 1 and H ( div ) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, preprint (2017), https://arxiv.org/abs/1701.02161. 10.1090/mcom/3482Search in Google Scholar

[23] G. N. Gatica, A. Marquez and W. Rudolph, A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems, Comput. Methods Appl. Mech. Engrg. 264 (2013), no. 1, 23–48. 10.1016/j.cma.2013.05.010Search in Google Scholar

[24] G. N. Gatica and E. P. Stephan, A mixed-FEM formulation for nonlinear incompressible elasticity in the plane, Numer. Methods Partial Differential Equations 18 (2002), no. 1, 105–128. 10.1002/num.1046Search in Google Scholar

[25] A. Hannukainen, R. Stenberg and M. Vohralík, A unified framework for a posteriori error estimation for the Stokes problem, Numer. Math. 122 (2012), 725–769. 10.1007/s00211-012-0472-xSearch in Google Scholar

[26] D. S. Hughes and J. L. Kelly, Second-order elastic deformation of solids, Phys. Rev. 92 (1953), 1145–1149. 10.1103/PhysRev.92.1145Search in Google Scholar

[27] K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of linear elasticity with weak stress symmetry, SIAM J. Numer. Anal. 48 (2011), 2364–2385. 10.1137/110823031Search in Google Scholar

[28] P. Ladevèze, Comparaison de modèles de milieux continus, Ph.D. thesis, Université Pierre et Marie Curie (Paris 6), 1975. Search in Google Scholar

[29] P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), 485–509. 10.1137/0720033Search in Google Scholar

[30] P. Ladevèze, J. P. Pelle and P. Rougeot, Error estimation and mesh optimization for classical finite elements, Engrg. Comp. 8 (1991), no. 1, 69–80. 10.1108/eb023827Search in Google Scholar

[31] A. F. D. Loula and J. N. C. Guerreiro, Finite element analysis of nonlinear creeping flows, Comput. Methods Appl. Mech. Engrg. 79 (1990), no. 1, 87–109. 10.1016/0045-7825(90)90096-5Search in Google Scholar

[32] R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), 1394–1414. 10.1137/S0036142903433790Search in Google Scholar

[33] J. Nec̆as, Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley & Sons, Chichester, 1986. Search in Google Scholar

[34] S. Nicaise, K. Witowski and B. Wohlmuth, An a posteriori error estimator for the Lamé equation based on H ( div ) -conforming stress approximations, IMA J. Numer. Anal. 28 (2008), 331–353. 10.1093/imanum/drm008Search in Google Scholar

[35] S. Ohnimus, E. Stein and E. Walhorn, Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems, Internat. J. Numer. Methods Engrg. 52 (2001), 727–746. 10.1002/nme.228Search in Google Scholar

[36] D. A. D. Pietro and J. Droniou, A hybrid high-order method for Leray–Lions elliptic equations on general meshes, Math. Comp. 86 (2017), no. 307, 2159–2191. 10.1090/mcom/3180Search in Google Scholar

[37] D. A. D. Pietro and J. Droniou, W s , p -approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray–Lions problems, Math. Models Methods Appl. Sci. 27 (2017), no. 5, 879–908. 10.1142/S0218202517500191Search in Google Scholar

[38] M. Pitteri and G. Zanotto, Continuum Models for Phase Transitions and Twinning in Crystals, Chapman & Hall/CRC, Boca Raton, 2002. 10.1201/9781420036145Search in Google Scholar

[39] W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241–269. 10.1090/qam/25902Search in Google Scholar

[40] S. I. Repin, A Posteriori Estimates for Partial Differential Equations, Radon Ser. Comput. Appl. Math. 4, Walter de Gruyter, Berlin, 2008. 10.1515/9783110203042Search in Google Scholar

[41] R. Riedlbeck, D. A. Di Pietro and A. Ern, Equilibrated stress reconstructions for linear elasticity problems with application to a posteriori error analysis, Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects, Springer Proc. Math. Stat. 199, Springer, Cham (2017), 293–301. 10.1007/978-3-319-57397-7_22Search in Google Scholar

[42] R. Riedlbeck, D. A. Di Pietro, A. Ern, S. Granet and K. Kazymyrenko, Stress and flux reconstruction in Biot’s poro-elasticity problem with application to a posteriori analysis, Comput. Math. Appl. 73 (2017), no. 7, 1593–1610. 10.1016/j.camwa.2017.02.005Search in Google Scholar

[43] D. Sandri, Sur l’approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO Model. Math. Anal. Numer. 27 (1993), no. 2, 131–155. 10.1051/m2an/1993270201311Search in Google Scholar

[44] L. R. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, USA, 1975. Search in Google Scholar

[45] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, 1996. Search in Google Scholar

[46] R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems, Comput. Methods Appl. Mech. Engrg. 176 (1999), 419–440. 10.1016/S0922-5382(98)80014-7Search in Google Scholar

[47] M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates, Numer. Math. 41 (1983), 39–53. 10.1007/BF01396304Search in Google Scholar

[48] M. Vohralík, On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H 1 , Numer. Funct. Anal. Optim. 26 (2005), no. 7–8, 925–952. 10.1080/01630560500444533Search in Google Scholar

[49] M. Vohralík, Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp. 79 (2010), 2001–2032. 10.1090/S0025-5718-2010-02375-0Search in Google Scholar

Received: 2018-02-12
Revised: 2018-05-31
Accepted: 2018-06-03
Published Online: 2018-06-20
Published in Print: 2020-01-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2018-0012/html
Scroll to top button