Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 3, 2015

Sorption of the anionic reactive red RB dye in cellulose: Assessment of kinetic, thermodynamic, and equilibrium data

  • Lucinaldo S. Silva , Luciano C. B. Lima , Francisco J. L. Ferreira , Mateus S. Silva , Josy A. Osajima , Roosevelt D. S. Bezerra and Edson C. Silva Filho
From the journal Open Chemistry

Abstract

The cellulose matrix was characterized by FTIR, 13C NMR, XRD, TG, SEM and applied in the removal of the reactive red RB dye in an aqueous medium, with a capacity of adsorption at a pH of 2.0, and an adsorption equilibrium time which was reached at around 200 mins. The kinetic study for the system followed the Elovich model. The adsorption isotherms for the system at temperatures of 35°C, 45°C, and 55°C were adjusted to the Langmuir, Freundlich, Sips, and Redlich-Peterson non-linear models, with a capacity of adsorption for adsorbent of 5.97 mg g-1, 5.64 mg g-1, and 4.62 mg g-1, respectively. The adsorption occurred by electrostatic interactions and it was favorable and spontaneous, with the influence of temperature.

References

[1] Wang L., Li J., Adsorption of C.I. Reactive Red 228 dye from aqueous solution by modified cellulose from flax shive: Kinetics, equilibrium, and thermodynamics, Ind. Crop. Prod., 2013, 42, 153-158. 10.1016/j.indcrop.2012.05.031Search in Google Scholar

[2] Gupta V.K., Suhas., Application of low-cost adsorbents for dye removal – A review, J. Environ. Manage., 2009, 90, 2313-2342. 10.1016/j.jenvman.2008.11.017Search in Google Scholar PubMed

[3] Neta J. J. S., Moreira G. C., Silva C. J., Reis C., Reis E. L., Use of polyurethane foams for the removal of the Direct Red 80 and Reactive Blue 21 dyes in aqueous medium, Desalination., 2011, 281, 55-60. 10.1016/j.desal.2011.07.041Search in Google Scholar

[4] Melo J. C. P., Silva Filho E. C., Santana S. A. A., Airoldi C., Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface, Colloid Surface A., 2009, 346, 138-145. 10.1016/j.colsurfa.2009.06.006Search in Google Scholar

[5] Melo J. C. P., Silva Filho E. C., Santana S. A. A. Airoldi, C., Exploring the favorable ion-exchange ability of phthalylated cellulose biopolymer using thermodynamic data, Carbohydr. Res., 2010, 345, 1914-1921. 10.1016/j.carres.2010.06.012Search in Google Scholar PubMed

[6] Zhong Z., Yang Q., Li X., Luo K., Liu Y., Zeng G., Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption, Ind. Crop. Prod., 2013, 37, 178-185. 10.1016/j.indcrop.2011.12.015Search in Google Scholar

[7] Xie K., Zhao W., He X., Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution, Carbohydr. Polym., 2011, 83, 1516-1520. 10.1016/j.carbpol.2010.09.064Search in Google Scholar

[8] Donia A. M., Atia A. A., Al-amrani W. A., El-Nahas A. M., Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica, J. Hazard. Mater., 2009, 161, 1544-1550. 10.1016/j.jhazmat.2008.05.042Search in Google Scholar PubMed

[9] İyim T. B., Güçlü G., Removal of basic dyes from aqueous solutions using natural clay, Desalination., 2009, 249, 1377- 1379. 10.1016/j.desal.2009.06.020Search in Google Scholar

[10] Alver E., Metin A.U., Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies, Chem. Eng. J. 2012, 200, 59-67. Search in Google Scholar

[11] Cestari A. R., Vieira E. F.S., Tavares A. M.G. Bruns, R. E., The removal of the indigo carmine dye from aqueous solutions using cross-linked chitosan—Evaluation of adsorption thermodynamics using a full factorial design, J. Hazard. Mater., 2008, 153, 566-574. 10.1016/j.jhazmat.2007.08.092Search in Google Scholar PubMed

[12] Robinson T., Mcmullan G., Marchant R., Nigam P., Remediation of dyes in textile e uent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 2001, 77, 247-255. 10.1016/S0960-8524(00)00080-8Search in Google Scholar

[13] Zhang Z., O’Hara I. M., Kent G. A., Doherty W. O. S., Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse, Ind. Crop. Prod. 2013, 42, 41-49. Search in Google Scholar

[14] Gong R., Ding Y., Li M., Yang C., Liu H., Sun Y., Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution, Dyes Pigments., 2005, 64, 187-192. 10.1016/j.dyepig.2004.05.005Search in Google Scholar

[15] Ip A.W.M., Barford J.P., Mckay G., Production and comparison of high surface area bamboo derived active carbons, Bioresour. Technol., 2008, 99, 8909-8916. 10.1016/j.biortech.2008.04.076Search in Google Scholar

[16] Balathanigaimani M., Shim W., Park K., Lee J., Moon H., Effects of structural and surface energetic heterogeneity properties of novel corn grain-based activated carbons on dye adsorption, Micropor. Mesopor. Mat., 2009, 118, 232-238. 10.1016/j.micromeso.2008.08.028Search in Google Scholar

[17] Balistrieri L. S., Murray J. W., The surface chemistry of goethite (α – FeOOH) in major ion seawater, Am. J. Sci. 1981, 281, 788- 806. Search in Google Scholar

[18] Lima E.C., Royer B., Vaghetti J. C. P., Simon N. M., Cunha B. M., Pavan F. A., et al., Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution Kinetics and equilibrium study, J. Hazard. Mater., 2008, 155, 536-550. 10.1016/j.jhazmat.2007.11.101Search in Google Scholar

[19] Largegren, S., About the theory of so-called adsorption of soluble substances, Kung. Suen Vetenskap. Dem. Handling., 1898, 241, 1–39. Search in Google Scholar

[20] Ho Y. S., Mckay G., Kinetic models for the sorption of dye from aqueous solution by wood, Process. Saf. Environ., 1998, 76, 183-191. 10.1205/095758298529326Search in Google Scholar

[21] Weber Jr W. J., Morris J. C., Kinetics of adsorption on carbon from solution, J. Sanit. Engine Divis. Amer. Soc. Civil. Engin., 1963, 89, 31–59. 10.1061/JSEDAI.0000430Search in Google Scholar

[22] Aharoni C., Tompkins F. C., Kinetics of adsorption and desorption and the Elovich equation, Adv. Catal. Rel. Subj., 1970, 21, 1–49. 10.1016/S0360-0564(08)60563-5Search in Google Scholar

[23] Machado F. M., Bergmann C. P., Fernandes T. H. M., Lima E. C., Royer B., Calvete T., et al., Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater. 2011, 192, 1122-1131. Search in Google Scholar

[24] Shukla A., Zhang Y. H., Dubey P., Margrave J. L., Shukla S. S., The role of sawdust in the removal of unwanted materials from water, J. Hazard. Mater. 2002, 95, 137-152. Search in Google Scholar

[25] Langmuir I., The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 1916, 38, 2221-2295. 10.1021/ja02268a002Search in Google Scholar

[26] Freundlich H. M. F., Uber die adsorption in lösungen, Z. Phys. Chem. 1906, 57A, 385- 470. Search in Google Scholar

[27] Sips, R., On the structure of a catalyst surface, J. Chem. Phys., 1948, 16, 490–495. 10.1063/1.1746922Search in Google Scholar

[28] Redlich O., Peterson D. L., A useful adsorption isotherm, J. Phys. Chem., 1959, 63, 1024-1024. 10.1021/j150576a611Search in Google Scholar

[29] Qin Q., Ma J., Liu K., Adsorption of anionic dyes onammoniumfunctionalized MCM-41, J. Hazard. Mater., 2009, 162, 133-139. 10.1016/j.jhazmat.2008.05.016Search in Google Scholar

[30] Elkady M.F., Ibrahim A.M., Abd El-Latif M.M., Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads, Desalination., 2011, 278, 412-423. 10.1016/j.desal.2011.05.063Search in Google Scholar

[31] Pavia D. L., Basser G. M., Morrill T. C., Introduction to Spectroscopy, 2rd ed., Saunders College Publishing, New York, 1996. Search in Google Scholar

[32] Silva Filho E. C., Silva L. S., Lima L. C. B., Santos Junior L. S., Santos M. R. M. C., Matos J. M. E., et al., Thermodynamic data of 6-(4 -aminobutylamino)-6- deoxycellulose sorbent for cation removal from aqueous solutions, Sep. Sci. Technol. 2011, 46, 2566-2574. Search in Google Scholar

[33] Bezerra R. D. S., Silva M. M. F., Santos M. R. M. C., Airoldi C; Silva Filho E. C., Natural cellulose for ranitidine drug removal from aqueous solutions, J. Environ. Chem. Eng., 2014, 2, 605-611. Search in Google Scholar

[34] Srivastava V.C., Mall I.D., Mishra I.M., Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA, J. Hazard. Mater., 2005, 134, 257-267. 10.1016/j.jhazmat.2005.11.052Search in Google Scholar

[35] Silva M. M. F., Oliveira M. M., Avelino M. C., Fonseca M. G., Almeida R. K., Silva Filho, E. C., Adsorption of an industrial anionic dye by modified-KSF-montmorillonite: Evaluation of the kinetic, thermodynamic and equilibrium data, Chem. Eng. J., 2012, 203, 259-268. 10.1016/j.cej.2012.07.009Search in Google Scholar

[36] Andrzejewska A., Krysztafkiewicz K. A., Jesionowski T., Treatment of textile dye wastewater using modified silica, Dyes Pigments., 2007, 75, 116-124. 10.1016/j.dyepig.2006.05.027Search in Google Scholar

[37] Almeida V.C., Development of analytical methods for the determination and extraction of textile dyes in industrial effluents, Doctoral Thesis, State University of Maringa, São Paulo, Brazil, 2006. Search in Google Scholar

[38] Debrassi A., Largura M.C.T., Rodrigues C.A., Adsorção do Corante Vermelho Congo por Derivados da O-Carboximetilquitosana Hidrofobicamente Modificados, Quim. Nova., 2011, 34, 746-770. Search in Google Scholar

[39] Maatar W., Alila S., Boufi S., Cellulose based organogel as an adsorbent for dissolved organic compounds, Ind. Crop. Prod., 2013, 49, 33-42. 10.1016/j.indcrop.2013.04.022Search in Google Scholar

[40] Gay D.S.F., Fernandes T.H.M., Amavisca C.V., Cardoso N.F., Benvenutti E. V., Costa T.M.H., et al., Silica grafted with a silsesquioxane containing the positively charged 1,4-diazoniabicycloSearch in Google Scholar

[2.2.2]octane group used as adsorbent for anionic dye removal, Desalination., 2010, 258, 128-135. 10.1016/j.desal.2010.03.026Search in Google Scholar

[41] Ruthven D. M., Principals of adsorption and adsorption processes, 1rd ed., Jonh Wley & Sons, New York, 1984. Search in Google Scholar

[42] Namasivayam C., Prabha D., Kumutha M., Removal of direct red and acid brilliant blue by adsorption on to banana pith, Bioresour. Technol., 1998, 64, 77-79. 10.1016/S0960-8524(97)86722-3Search in Google Scholar

[43] Tsai W.T., Chang C.Y., Lin M.C., Chien S.F., Sun H.F., Hsieh M.F., Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation, Chemosphere., 2001, 45, 51-58. 10.1016/S0045-6535(01)00016-9Search in Google Scholar

[44] Namasivayam C., Dinesh Kumar M., Selvi K., Ashruffunissa Begum R., Vanathi T., Yamuna R.T., ‘Waste’ coir pith–a potential biomass for the treatment of dyeing wastewaters, Biomass Bioenerg., 2001, 21, 477-483. 10.1016/S0961-9534(01)00052-6Search in Google Scholar

[45] Jain A. K., Gupta V.K., Bhatnagar A., Suhas A., Utilization of industrial waste products as adsorbents for the removal of dyes, J. Hazard. Mater., 2003, 101, 31-42. 10.1016/S0304-3894(03)00146-8Search in Google Scholar

[46] Gupta G.S., Shukla S.P., An inexpensive adsorption technique for the treatment of carpet effluents by low cost materials, Adsorpt. Sci. Technol., 1996, 13, 15-26. 10.1177/026361749601300103Search in Google Scholar

Received: 2013-10-11
Accepted: 2014-8-20
Published Online: 2015-4-3

© 2015 Lucinaldo S. Silva et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0079/html
Scroll to top button