Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter September 22, 2018

Optimization of manufacturing processes for biodegradable polymeric stents regarding improved mechanical properties

  • Olga Sahmel EMAIL logo , Daniela Arbeiter , Kerstin Schümann , Niels Grabow , Stefan Siewert and Klaus-Peter Schmitz

Abstract

Although current drug eluting stents show low risks of in-stent restenosis and stent thrombosis, the presence of a permanent foreign body inside the vessel represents a major limitation. In order to overcome this limitation, stents made of biodegradable polymeric materials are currently being developed. The present work describes an optimized fabrication process for tubular semi-finished products for manufacturing of stents made of poly-L-lactide (PLLA). The impact of the haul-off speed as a major parameter during extrusion processing on the cross-sectional area of tubular specimens was analyzed. It could be shown that the crosssection of the extrudate, in particular the tubing diameter and wall thickness, can be adjusted by varying haul-off speed. In a subsequent blow molding process the influence of the holding time on polymer cold crystallization was analyzed. Thermal properties of the polymeric material after processing were examined by differential scanning calorimetry (DSC). The results showed that there is almost no cold crystallization using a holding time of at least 20 minutes. The investigations showed that semi-finished products with variable geometry and improved mechanical properties can be produced with the described extrusion and blow molding process.

Published Online: 2018-09-22
Published in Print: 2018-09-01

© 2018 the author(s), published by Walter de Gruyter Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.1515/cdbme-2018-0140/html
Scroll to top button