Skip to main content
Log in

Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Halophytes have developed a variety of adaptations to cope with excessive salt and other environmental constraints. These have resulted in altered leaf traits that affect the leaf optical properties and energy balance. In halophytes, there is often salt on the leaf surface due to salt aerosols and salt excretion from glandular cells. After examining the effects of the natural salt deposition on the leaf surface on the leaf light reflectance and transmittance, we defined the relationship between different leaf traits and the leaf optical properties in four halophytes (Atriplex prostrata, Atriplex portulacoides, Crithmum maritimum, and Limonium angustifolium). They differed significantly in the amount of naturally deposited salt on their leaves (range, 0.50-7.55 mg cm−2) and in the majority of the measured leaf traits. Differences were most pronounced for epidermal layer thickness, dry mass per leaf volume, and amount of UV-absorbing compounds. For the leaf optical properties, the salt on the leaf surface significantly reduced transmittance of UV, violet, and blue wavelengths. Redundancy analysis indicated that leaf upper epidermis thickness and leaf surface salt explained 58% and 7%, respectively, of the variability of the measured reflectance spectra. Leaf surface salt was particularly important for short wavelengths, explaining 35% of the reflectance variability in the UV region, and 20% in the violet and blue regions. The majority of the transmittance spectra variability was explained by leaf pigment content. These data reveal that leaf surface salt can function as a UV screen, to filter out potentially damaging short-wave radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Addala S., Bouhdjer L., Chala A., Bouhdjar A., Halimi O., Boudine B. & Sebais M. 2013. Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals. Chinese Physics B 22 (9). 10.1088/1674-1056/22/9/098103

  • Ali Y., Aslam Z., Ashraf M.Y. & Tahir G.R. 2004. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int. J. Environ. Sci. Tech. 1: 221–225.

    Article  CAS  Google Scholar 

  • Baltzer J.L. & Thomas S.C. 2005. Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. Am. J. Bot. 92: 214–223.

    Article  CAS  PubMed  Google Scholar 

  • Barnes P.W., Flint S.D., Ryel R.J., Tobler M.A., Barkley A.E. & Wargent J.J. 2015. Rediscovering leaf optical properties: new insights into plant acclimation to solar UV radiation. Plant Physiol. Bioch. 93: 94–100.

    Article  CAS  Google Scholar 

  • Butnik A.A., Japakova U.N. & Begbaeva G.F. 2001. Halophytes: structure and adaptation, pp. 147–153. In: Breckle S.-W., Veste M. & Wucherer W. (eds), Sustainable Land Use in Deserts, Springer, Berlin.

    Google Scholar 

  • Caldwell M.M. 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol. Monographs 38: 243–268.

    Article  Google Scholar 

  • Castro K.L. & Sanchez-Azofeifa G.A. 2008. Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors 8: 51–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close D.C. & Beadle C.L. 2003. The ecophysiology of foliar anthocyanin. Bot. Rev. 69: 149–161.

    Article  Google Scholar 

  • Demmig-Adams B. & Adams W.W. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1: 21–26.

    Article  Google Scholar 

  • Drumm H. & Mohr H. 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum, seedling. Photoch. Photobiol. 27: 241–248.

    Article  CAS  Google Scholar 

  • Duarte B., Santos D., Marques J.C. & Caçador I. 2013. Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback — implications for resilience in climate change. Plant Physiol. Biochem. 67: 178–188.

    Article  CAS  PubMed  Google Scholar 

  • Eller B.M., Brinckmann E. & von Willert D.J. 1983. Optical properties and succulence of plants in the arid Richtersveld (Cp., Rep. South Africa). Bot. Helvet. 93: 47–55.

    Google Scholar 

  • Esteban R., Fernández-Marín B., Hernandez A., Jiménez E.T., León A., García-Mauriño S., Silva C.D., Dolmus J.R., Dolmus C.M., Molina M.J., Gutierrez N.N., Loaisiga M.I., Brito P. & García-Plazaola J.I. 2013. Salt crystal deposition as a reversible mechanism to enhance photoprotection in black mangrove. Trees 27: 229–237.

    Article  CAS  Google Scholar 

  • Flowers T.J. & Colmer T.D. 2008. Salinity tolerance in halophytes. New Phytol. 179: 945–963.

    Article  CAS  PubMed  Google Scholar 

  • Flowers T.J. & Colmer T.D. 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115: 327–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers T.J., Munns R. & Colmer T.D. 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 115: 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Gitelson A.A., Zur Y., Chivkunova O.B. & Merzlyak M.N. 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 75: 272–281.

    Article  CAS  PubMed  Google Scholar 

  • Katschnig D., Broekman R. & Rozema J. 2013. Salt tolerance in the halophyte Salicornio, dolichostachya Moss: growth, morphology and physiology. Environ. Exp. Bot. 92: 32–42.

    Article  CAS  Google Scholar 

  • Kelley D.B., Goodin J.R. & Miller D.R. 1982. Biology of Atriplex, pp. 79–107. In: Sen D.N. & Rajpurohit K.S. (eds), Contributions to the Ecology of Halophytes, Tasks for Vegetation Science, Vol. II, Dr. W. Junk Publishers, The Hague.

    Chapter  Google Scholar 

  • Klancnik K., Mlinar M. & Gaberščik A. 2012. Heterophylly results in a variety of ‘spectral signatures’ in aquatic plant species. Aquatic Bot. 98: 20–26.

    Article  Google Scholar 

  • Klancnik K., Pančić M. & Gaberščik A. 2014a. Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiol. 737: 121–130.

    Article  CAS  Google Scholar 

  • Klančnik K., Vogel-Mikuš K. & Gaberščik A. 2014b. Silicified structures affect leaf optical properties in grasses and sedge. J. Photoch. Photobiol. B: Biology 130: 1–10.

    Article  CAS  Google Scholar 

  • Klančnik K., Vogel-Mikuš K., Kelemen M., Vavpetic P., Pelicon P., Kump P., Jezeršek D., Gianoncelli A. & Gaberščik A. 2014c. Leaf optical properties are affected by the location and type of deposited biominerals. J. Photoch. Photobiol. B: Biology 140: 276–285.

    Article  CAS  Google Scholar 

  • Klancnik K., Gradinjan D. & Gaberščik A. 2015. Epiphyton alters the quantity and quality of radiation captured by leaves in submerged macrophytes. Aquatic Bot. 120: 229–235.

    Article  Google Scholar 

  • Klančnik K. & Gaberščik A. 2016. Leaf spectral signatures differ in plant species colonising habitats along a hydrological gradient. J. Plant Ecol. 9: 442–450.

    Article  Google Scholar 

  • Landi M., Tattini M. & Gould K.S. 2015. Multiple functional roles of anthocyanins in plant—environment interactions. Environ. Exp. Bot. 119: 4–17.

    Article  CAS  Google Scholar 

  • Larcher W. 2003 Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 4th ed., Springer, Berlin, 514 pp.

    Book  Google Scholar 

  • Levizou E., Drilias P., Psaras G.K. & Manetas Y. 2005. Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co—occur. New Phytol. 165: 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Li X., Liu L., Zhao J. & Tan J. 2015. Optical properties of sodium chloride solution within the spectral range from 300 to 2500 nm at room temperature. Appl. Spect. 69: 635–640.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K. & Buschmann C. 2001a. Extraction of photosynthetic tissues: chlorophylls and carotenoids, F.4.2.1—4.2.6. In: Current Protocols in Food Analytical Chemistry, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Lichtenthaler H.K. & Buschmann C. 2001b. Chlorophylls and carotenoids: measurement and characterisation by UV—VIS spectroscopy, F4.3.1—F4.3.8. In: Current Protocols in Food Analytical Chemistry, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Liew O.W., Chong P.C.J., Li B. & Asundi A.K. 2008. Signature optical cues: emerging technologies for monitoring plant health. Sensors 8: 3205–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liphschitz N. & Waisel Y. 1982. Adaptation of plants to saline environments: salt excretion and glandular structure, pp. 197–214. In: Sen D.N. & Rajpurohit K.S. (eds), Contributions to the Ecology of Halophytes, Tasks for Vegetation Science, Vol. II, Dr. W. Junk Publishers, The Hague.

    Google Scholar 

  • LoPresti E.F. 2014. Chenopod salt bladders deter insect herbivores. Oecologia 174: 921–930.

    Article  CAS  PubMed  Google Scholar 

  • Munns R. & Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Posada J.M., Sievnen R., Messier C., Perttunen J., Nikinmaa E. & Lechowicz M.J. 2012. Contributions of leaf photosynthetic capacity, leaf angle and self—shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment. Ann. Bot. 110: 731–741.

    Article  PubMed  PubMed Central  Google Scholar 

  • Redondo-Gómez S., Mateos-Naranjo E., Davy A.J., Fernández-Muñoz F., Castellanos E.M., Luque T. & Figueroa M.E. 2007. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann. Bot. 100: 555–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozema J., Björn L.O., Bornman J.F., Gaberščik A., Häder D.P., Trošt T., Germ M., Klisch M., Gröniger A., Sinha R.P., Lebert M., He Y.Y., Buffoni-Hall R., de Bakker N.V.J., van de Staaij J. & Meijkamp B.B. 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems — an experimental and functional analysis of the evolution of UV—absorbing compounds. J. Photoch. Photobiol. B: Biology 66: 2–12.

    Article  CAS  Google Scholar 

  • Rozema J. & Schat H. 2013. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 92: 83–95.

    Article  CAS  Google Scholar 

  • Saravanavel R., Ranganathan R. & Anantharaman P. 2011. Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. Rec. Res. Sci. Technol. 3: 177–180.

    CAS  Google Scholar 

  • Schirmer U. & Breckle S.-W. 1982. The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species), pp. 215–231. In: Sen D.N. & Rajpurohit K.S. (eds), Contributions to the Ecology of Halophytes, Tasks for Vegetation Science, Vol. II, Dr. W. Junk Publishers, The Hague.

    Google Scholar 

  • Sinclair R. & Thomas D.A. 1970. Optical properties of leaves of some species in arid South Australia. Austral. J. Bot. 18: 261–273.

    Article  Google Scholar 

  • Smaoui A., Barhoumi Z., Rabhi M. & Abdelly C. 2010. Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma 248: 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Steyn W.J., Wand S.J.E., Holcroft D.M. & Jacobs G. 2002. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 155: 349–361.

    Article  CAS  PubMed  Google Scholar 

  • ter Braak C.J.F. & Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, 500 pp.

    Google Scholar 

  • Ustin S.L., Jacquemoud S. & Govaerts Y. 2001. Simulation of photon transport in a three—dimensional leaf: implications for photosynthesis. Plant Cell Envir. 24: 1095–1103.

    Article  Google Scholar 

  • Woolley J.T. 1971. Reflectance and transmittance of light by leaves. Plant Physiol. 47: 656–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajec L., Gradinjan D., Klančnik K. & Gaberščik A. 2016. Limestone dust alters the optical properties and traits of Fagus sylvatica leaves. Trees 30: 2143–2152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Grašič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grašič, M., Budak, V., Klančnik, K. et al. Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface. Biologia 72, 1131–1139 (2017). https://doi.org/10.1515/biolog-2017-0125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0125

Key words

Navigation