Skip to main content

Advertisement

Log in

Metagenomics of a nickel-resistant bacterial community in an anthropogenic nickel-contaminated soil in southwest Slovakia

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The sampling sites situated in southwest Slovakia are according to environmental monitoring of Slovakia a part of strongly disturbed environment by heavy metals, mainly by high nickel concentrations. The aim of the present study was to characterise a complete microbial assemblage from a dump containing heavy-metal-contaminated waste as well as from farmland situated nearby this dump by using shotgun sequencing of 16S rDNA amplicons. It was found that nickel influenced both species richness and diversity and that microbiota of both samples differed significantly (Bray-Curtis dissimilarity 0.73) at genus level mainly by abundances of sequences from particular genera and occurrences of the unique genera in individual bacterial communities. In spite of these differences between microbial assemblages, both samples shared many bacterial genera that might constitute the specific nickel-resistant bacterial niche, and it was possible to delineate the core microbiome of our two samples at species level. The core set of 30 species, represented by the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Cyanobacteria, suggest that these species might form a “core microbiome” of the specific nickel-resistant bacterial niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B-C:

Bray-Curtis dissimilarity coefficient

bp:

base pair

Chao 1, Chao 1 index (species richness estimator):

CzcA, heavy metal efflux pump (cobalt-zinc-cadmium resistance)

D:

dominance

H’:

Shanon-Wiener diversity index

I:

numbers of reads

J’:

equitability

nccA:

heavy-metal-resistance determinant (nickel-cobalt-cadmium resistance)

PAHs:

polycyclic aromatic hydrocarbons

PCBs:

polychlorinated biphenyls

R:

species richness

S:

Simpson’s index

References

  • Bohuš P. & Klinda J. 2010. Environmentálna regionalizácia Slovenskej republiky. MZP SR, Bratislava, SAZP, Banská Bystrica. (in Slovak)

    Google Scholar 

  • Bray J.R. & Curtis J.T. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Article  Google Scholar 

  • Chao A. 1984. Nonparametric estimation of the number of classes in a community. Scand. J. Stat. 11: 265–270.

    Google Scholar 

  • Cho J., Vergin K., Morris R. & Giovannoni S. 2004. Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611–621.

    Article  CAS  Google Scholar 

  • Chodak M., Golebiewski M., Morawska-Ploskonka J., Kuduk K. & Niklińska M. 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil. Ecol. 64: 7–14.

    Article  Google Scholar 

  • DeSantis T.Z., Hugenholtz P., Keller K., Brodie E.L., Larsen N., Piceno Y.M., Phan R. & Andersen G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069–5072.

    Article  CAS  Google Scholar 

  • Edgar R.C., Haas B.J., Clemente J.C., Quince C. & Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200.

    Article  CAS  Google Scholar 

  • Erbe J.L., Taylor K.B. & Hall L.M. 1995. Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals. Nucleic Acids Res. 23: 2472–2478.

    Article  CAS  Google Scholar 

  • Golebiewski M., Deja-Sikora E., Cichosz M., Tretyn A. & Wró-bel B. 2014. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb. Ecol. 67: 635–647.

    Article  CAS  Google Scholar 

  • Harichová J., Karelová E., Pangallo D. & Ferianc P. 2012. Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample. Biologia 67: 1038–1048.

    Article  Google Scholar 

  • Harper D.A.T. (ed.) 1999. Numerical Paleobiology. Computer-Based Modelling and Analysis of Fossils and their Distributions. John Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 468 pp.

    Google Scholar 

  • Hur M., Kim Y., Song H.-R, Kim J.M., Choi Y.I. & Yi H. 2011. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbiol. 77: 7611–7619.

    Article  CAS  Google Scholar 

  • Iyaka A.Y. 2011. Nickel in soils: a review of its distribution and impacts. Sci. Res. Essays 6: 6774–6777.

    Google Scholar 

  • Janssen P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719–1728.

    Article  CAS  Google Scholar 

  • Karelová E., Harichová J., Stojnev T., Pangallo D. & Ferianc P. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia 66: 18–26.

    Article  Google Scholar 

  • Keller M. & Zengler K. 2004. Tapping into microbial diversity. Nat. Rev. Microbiol. 2: 141–150.

    Article  CAS  Google Scholar 

  • Khan S., Hesham A.E.L., Qiao M., Rehman S. & He J.Z. 2010. Effect of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Polut. Res. 17: 288–296.

    Article  CAS  Google Scholar 

  • Liu H.Y., Probs A. & Liao B. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 339: 153–166.

    Article  CAS  Google Scholar 

  • Mason O.U., Hazen T.C., Borglin S., Chain P.S.G., Dubin-sky E.A., Fortney J.L., Han J., Holman H.Y.N., Hultman J., Lamendella R., Mackelprang R., Malfatti S., Tom L.M., Tringe S.G., Woyke T., Zhou J., Rubin E.M. & Jansson J.K. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill. ISME J. 6: 1715–1727.

    Article  CAS  Google Scholar 

  • Michaeli E., Boltižiar M., Solár V. & Ivanová M. 2012. The landfill of industrial waste - lúženec near the former nickel smelter at Sereď town as an example of environmental load. Zivotné Prostredie 46: 63–68.

    Google Scholar 

  • Nacke H., Thürmer A., Wollherr A., Will C., Hodac L., Herold N., Schöning I., Schrumpf M. & Daniel R. 2011. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6: e17000.

    Article  CAS  Google Scholar 

  • Nešťák Ľ., Bejda M., Bezecný M., Hajdú Z. & Chmelo S. 2007. Územný plán mesta Sereď - zmeny a doplnky 9c. 02/2007, časť C - Komplexná charakteristika a hodnotenie vplyvov na životné prostredie vrátane zdravia, pp. 27–79. (in Slovak)

    Google Scholar 

  • Nies D.H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313–339.

    Article  CAS  Google Scholar 

  • Ogilvie L.A. & Grant A. 2008. Linking pollution induced community tolerance (PICT) and microbial community structure in chronically metal polluted estuarine sediments. Mar. Environ. Res. 65: 187–198.

    Article  CAS  Google Scholar 

  • Ondov B.D., Bergman N.H. & Phillippy A.M. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12: 385.

    Article  Google Scholar 

  • Pechrada J., Sajjaphan K. & Sadowsky M.J. 2010. Structure and diversity of arsenic-resistant bacteria in an old tin mine area of Thailand. J. Microbiol. Biotechnol. 20: 169–178.

    Article  Google Scholar 

  • Quero G.M., Cassin D., Botter M., Perini L. & Luna G.M. 2015. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front. Microbiol. 6: 1053.

    Article  Google Scholar 

  • Ranjard L., Lignier L. & Chaussod R. 2006. Cumulative effect of short-term polymetal contamination on soil bacterial community structure. Appl. Environ. Microbiol. 72: 1684–1687.

    Article  CAS  Google Scholar 

  • Remenár M., Karelová E., Harichová J., Zámocký M., Kamlárová A. & Ferianc P. 2015. Isolation of previously uncultivable bacteria from a nickel contaminated soil using a diffusion-chamber-based approach. Appl. Soil Ecol. 95: 115–127.

    Article  Google Scholar 

  • Schlegel H.G., Cosson J.-P. & Baker A.J.M. 1991. Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Botanica Acta 104: 18–25.

    Article  CAS  Google Scholar 

  • Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., Sahl J.W., Stres B., Thallinger G.G., Van Horn D.J. & Weber C.F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537–7541.

    Article  CAS  Google Scholar 

  • Sheik C.S., Mitchell T.W., Rizvi F.Z., Rehman Y., Faisal M., Hasnain S., McInerney M.J. & Krumholz L.R. 2012. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7: e40059.

    Article  CAS  Google Scholar 

  • Szili-Kovács T. 2008. Effect of some metal salts on the cultivable part of soil microbial assemblage in a calcareous loam cropland 6 years after contamination. Acta Biologica Szegediensis 52: 201–204.

    Google Scholar 

  • Štursa P., Uhlík O., Kurzawová V., Koubek J., Ionescu M., Strohalm M., Lovecká P., Macek T. & Macková M. 2009. Approaches for diversity analysis of cultivable and non-cultivable bacteria in real soil. Plant Soil Environ. 55: 389–396.

    Article  Google Scholar 

  • Thiyagarajan V., Lau S., Tsoi M., Zhang W. & Qian P.Y. 2010. Monitoring bacterial biodiversity in surface sediment using terminal restriction fragment length polymorphism analysis (T-RFLP): application to coastal environment, pp. 151–163. In: Ishimatsu A. & Lie H.J. (eds), Coastal Environmental and Ecosystem Issues of the East China Sea. Terrapub & Nagasaki University.

    Google Scholar 

  • Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C., Knight R. & Gordon J.I. 2007. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449: 804–810.

    Article  CAS  Google Scholar 

  • Wagner M. & Horn M. 2006. The planctomycetes, verrucomi-crobia, chlamydiae and sister phyla comprise a superphy-lum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241–249.

    Article  CAS  Google Scholar 

  • Will C., Thürmer A., Wollherr A., Nacke H., Herold N., Schrumpf M., Gutknecht J., Wubet T., Buscot F. & Daniel R. 2010. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl. Environ. Microbiol. 76: 6751–6759.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ferianc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remenár, M., Harichová, J., Zámocký, M. et al. Metagenomics of a nickel-resistant bacterial community in an anthropogenic nickel-contaminated soil in southwest Slovakia. Biologia 72, 971–981 (2017). https://doi.org/10.1515/biolog-2017-0117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0117

Key words

Navigation