Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2006

Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine

  • Claudia von Montfort , Victor S. Sharov , Sabine Metzger , Christian Schöneich , Helmut Sies and Lars-Oliver Klotz
From the journal Biological Chemistry

Abstract

Singlet oxygen (1O2), an electronically excited form of molecular oxygen, is a mediator of biological effects of ultraviolet A radiation, stimulating signaling cascades in human cells. We demonstrate here that 1O2 generated by photosensitization or by thermodecomposition of 3,3′-(1,4-naphthylidene)dipropionate-1,4-endoperoxide inactivates isolated protein tyrosine phosphatases (PTPases). PTPase activities of PTP1B or CD45 were abolished by low concentrations of 1O2, but were largely restored by post-treatment with dithiothreitol. Electrospray ionization mass spectrometry analysis of tryptic digests of PTP1B exposed to 1O2 revealed oxidation of active-site Cys215 as the only cysteine residue oxidized. In summary, 1O2 may activate signaling cascades by interfering with phosphotyrosine dephosphorylation.

:

Corresponding author

References

Abdelmohsen, K., Gerber, P.A., von Montfort, C., Sies, H., and Klotz, L.O. (2003). Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J. Biol. Chem.278, 38360–38367.10.1074/jbc.M306785200Search in Google Scholar

Beier, J.I., von Montfort, C., Sies, H., and Klotz, L.O. (2006). Activation of ErbB2 by 2-methyl-1,4-naphthoquinone (menadione) in human keratinocytes: role of EGFR and protein tyrosine phosphatases. FEBS Lett.580, 1859–1864.10.1016/j.febslet.2006.02.048Search in Google Scholar

Blakesley, R.W. and Boezi, J.A. (1977). A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G250. Anal. Biochem.82, 580–582.10.1016/0003-2697(77)90197-XSearch in Google Scholar

Buchczyk, D.P., Klotz, L.O., Lang, K., Fritsch, C., and Sies, H. (2001). High efficiency of 5-aminolevulinate-photodynamic treatment using UVA irradiation. Carcinogenesis22, 879–883.10.1093/carcin/22.6.879Search in Google Scholar PubMed

Di Mascio, P. and Sies, H. (1989). Quantification of singlet oxygen generated by thermolysis of 3,3′-(1,4-naphthylidene)dipropionate. Monomol and dimol photoemission and the effects of 1,4-diaazabicyclo[2.2.2]octane. J. Am. Chem. Soc.111, 2909–2914.Search in Google Scholar

Ducret, A., van Oostveen, I., Eng, J.K., Yates, J.R. III, and Aebersold, R. (1998). High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci.7, 706–719.10.1002/pro.5560070320Search in Google Scholar PubMed PubMed Central

Grether-Beck, S., Bonizzi, G., Schmitt-Brenden, H., Felsner, I., Timmer, A., Sies, H., Johnson, J.P., Piette, J., and Krutmann, J. (2000). Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation. EMBO J.19, 5793–5800.10.1093/emboj/19.21.5793Search in Google Scholar PubMed PubMed Central

Grether-Beck, S., Olaizola-Horn, S., Schmitt, H., Grewe, M., Jahnke, A., Johnson, J.P., Briviba, K., Sies, H., and Krutmann, J. (1996). Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene. Proc. Natl. Acad. Sci. USA93, 14586–14591.10.1073/pnas.93.25.14586Search in Google Scholar PubMed PubMed Central

Klotz, L.O. (2002). Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen. Biol. Chem.383, 443–456.10.1515/BC.2002.047Search in Google Scholar PubMed

Klotz, L.O., Pellieux, C., Briviba, K., Pierlot, C., Aubry, J.M., and Sies, H. (1999). Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA. Eur. J. Biochem.260, 917–922.10.1046/j.1432-1327.1999.00255.xSearch in Google Scholar PubMed

Klotz, L.O., Holbrook, N.J., and Sies, H. (2001). UVA and singlet oxygen as inducers of cutaneous signaling events. Curr. Probl. Dermatol.29, 95–113.Search in Google Scholar

Knebel, A., Rahmsdorf, H.J., Ullrich, A., and Herrlich, P. (1996). Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J.15, 5314–5325.10.1002/j.1460-2075.1996.tb00916.xSearch in Google Scholar

Kolmodin, K. and Aqvist, J. (2001). The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Lett.498, 208–213.10.1016/S0014-5793(01)02479-6Search in Google Scholar

Kraljic, I. and El Mohsni, S. (1978). A new method for the detection of singlet oxygen in aqueous solutions. Photochem. Photobiol.28, 577–581.10.1111/j.1751-1097.1978.tb06972.xSearch in Google Scholar

Lohse, D.L., Denu, J.M., Santoro, N., and Dixon, J.E. (1997). Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1. Biochemistry36, 4568–4575.10.1021/bi963094rSearch in Google Scholar

Mahns, A., Melchheier, I., Suschek, C.V., Sies, H., and Klotz, L.O. (2003). Irradiation of cells with ultraviolet-A (320–400 nm) in the presence of cell culture medium elicits biological effects due to extracellular generation of hydrogen peroxide. Free Radic. Res.37, 391–397.10.1080/1071576031000064702Search in Google Scholar

Melchheier, I., von Montfort, C., Stuhlmann, D., Sies, H., and Klotz, L.O. (2005). Quinone-induced Cdc25A inhibition causes ERK-dependent connexin phosphorylation. Biochem. Biophys. Res. Commun.327, 1016–1023.10.1016/j.bbrc.2004.12.107Search in Google Scholar

Östman, A. and Böhmer, F.D. (2001). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol.11, 258–266.10.1016/S0962-8924(01)01990-0Search in Google Scholar

Pierlot, C., Aubry, J.M., Briviba, K., Sies, H., and Di Mascio, P. (2000). Naphthalene endoperoxides as generators of singlet oxygen in biological media. Methods Enzymol.319, 3–20.10.1016/S0076-6879(00)19003-2Search in Google Scholar

Rodgers, M.A.J. (1983). Solvent-induced deactivation of singlet oxygen: additivity relationships in nonaromatic solvents. J. Am. Chem. Soc.105, 6201–6205.10.1021/ja00358a001Search in Google Scholar

Rougee, M., Bensasson, R.V., Land, E.J., and Pariente, R. (1988). Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity. Photochem. Photobiol.47, 485–489.10.1111/j.1751-1097.1988.tb08835.xSearch in Google Scholar PubMed

Salmeen, A., Andersen, J.N., Myers, M.P., Meng, T.C., Hinks, J.A., Tonks, N.K., and Barford, D. (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature423, 769–773.10.1038/nature01680Search in Google Scholar PubMed

Scharffetter-Kochanek, K., Wlaschek, M., Brenneisen, P., Schauen, M., Blaudschun, R., and Wenk, J. (1997). UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol. Chem.378, 1247–1257.Search in Google Scholar

Schieke, S.M., von Montfort, C., Buchczyk, D.P., Timmer, A., Grether-Beck, S., Krutmann, J., Holbrook, N.J., and Klotz, L.O. (2004). Singlet oxygen-induced attenuation of growth factor signaling: possible role of ceramides. Free Radic. Res.38, 729–737.10.1080/10715760410001712764Search in Google Scholar

Sharov, V.S., Galeva, N.A., Knyushko, T.V., Bigelow, D.J., Williams, T.D., and Schöneich, C. (2002). Two-dimensional separation of the membrane protein sarcoplasmic reticulum Ca-ATPase for high-performance liquid chromatography-tandem mass spectrometry analysis of posttranslational protein modifications. Anal. Biochem.308, 328–335.10.1016/S0003-2697(02)00261-0Search in Google Scholar

Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem.68, 850–858.10.1021/ac950914hSearch in Google Scholar

Takakura, K., Beckman, J.S., Millan-Crow, L.A., and Crow, J.P. (1999). Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch. Biochem. Biophys.369, 197–207.10.1006/abbi.1999.1374Search in Google Scholar

Tonks, N.K. (2005). Redox redux: revisiting PTPs and the control of cell signaling. Cell121, 667–670.10.1016/j.cell.2005.05.016Search in Google Scholar

Tonks, N.K. and Neel, B.G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Curr. Opin. Cell Biol.13, 182–195.10.1016/S0955-0674(00)00196-4Search in Google Scholar

Tyrrell, R.M. (1996). Activation of mammalian gene expression by the UV component of sunlight – from models to reality. Bioessays18, 139–148.10.1002/bies.950180210Search in Google Scholar PubMed

Valencia, A. and Kochevar, I.E. (2006). Ultraviolet A induces apoptosis via reactive oxygen species in a model for Smith-Lemli-Opitz syndrome. Free Radic. Biol. Med.40, 641–650.10.1016/j.freeradbiomed.2005.09.036Search in Google Scholar PubMed

van Montfort, R.L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003). Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature423, 773–777.10.1038/nature01681Search in Google Scholar PubMed

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.175/html
Scroll to top button