Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 17, 2006

Identification of calpain cleavage sites in the G1 cyclin-dependent kinase inhibitor p19INK4d

  • Joma Joy , Narasimharao Nalabothula , Madhumita Ghosh , Oliver Popp , Marianne Jochum , Werner Machleidt , Shirley Gil-Parrado and Tad A. Holak
From the journal Biological Chemistry

Abstract

Calpains are a large family of Ca2+-dependent cysteine proteases that are ubiquitously distributed across most cell types and vertebrate species. Calpains play a role in cell differentiation, apoptosis, cytoskeletal remodeling, signal transduction and the cell cycle. The cell cycle proteins cyclin D1 and p21KIP1, for example, have been shown to be affected by calpains. However, the rules that govern calpain cleavage specificity are poorly understood. We report here studies on the pattern of μ-calpain proteolysis of the p19INK4d protein, a cyclin-dependent kinase 4/6 inhibitor that negatively regulates the mammalian cell cycle. Our data show new characteristics of calpain action: μ-calpain cleaves p19INK4d immediately after the first and second ankyrin repeats that are structurally less stable compared to the other repeats. This is in contrast to features observed so far in the specificity of calpains for their substrates. These results imply that calpain may be involved in the cell cycle by regulating the cell cycle regulatory protein turnover through CDK inhibitors and cyclins.

:

Corresponding author

References

Arora, A.S., DeGroen, P.C., Croall, D.E., Emori, Y., and Gores, G.J. (1996). Hepatocellular carcinoma cells resist necrosis during anoxia by preventing phospholipase-mediated calpain activation. J. Cell. Physiol.167, 434–442.10.1002/(SICI)1097-4652(199606)167:3<434::AID-JCP7>3.0.CO;2-QSearch in Google Scholar

Bates, S., Phillips, A.C., Clark, P.A., Stott, F., Peters, G., Ludwig, R.L., and Vousden, K.H. (1998). p14(ARF) links the tumour suppressors RB and p53. Nature395, 124–125.10.1038/25867Search in Google Scholar

Bartek, J., Bartkova, J., and Lukas, J. (1997). The retinoblastoma protein pathway in cell cycle control and cancer. Exp. Cell Res.237, 1–6.10.1006/excr.1997.3776Search in Google Scholar

Baumgartner, R., Fernandez-Catalan, C., Winoto, A., Huber, R., Engh, R.A., and Holak, T.A. (1998). Structure of human cyclin-dependent kinase inhibitor p19 (INK4d): comparison to known ankyrin-repeat-containing structures and implications for the dysfunction of tumor suppressor p16 (INK4a). Structure6, 1279–1290.10.1016/S0969-2126(98)00128-2Search in Google Scholar

Brotherton, D.H., Dhanaraj, V., Wick, S., Brizuela, L., Domaille, P.J., Volyanik, E., Xu, X., Parisini, E., Smith, B.O., Archer, S.J., et al. (1998). Crystal structure of the complex of the cyclin D dependent kinase Cdk6 bound to the cell-cycle inhibitor p19 (INK4d). Nature395, 244–250.10.1038/26164Search in Google Scholar

Cheek, S., Zhang, H., and Grishin, N.V. (2002). Sequence and structure classification of kinases. J. Mol. Biol.320, 855–881.10.1016/S0022-2836(02)00538-7Search in Google Scholar

Choi, Y.H., Lee, S.J., Nguyen, P., Jang, J.S., Lee, J., Wu, M.L., Takano, E., Maki, M., Henkart, P.A., and Trepel, J.B. (1997). Regulation of cyclin D1 by calpain protease. J. Biol. Chem.272, 28479–28484.10.1074/jbc.272.45.28479Search in Google Scholar

Croall, D.E. and Demartino, G.N. (1991). Calcium-activated neutral protease (calpain) system – structure, function, and regulation. Physiol. Rev.71, 813–847.10.1152/physrev.1991.71.3.813Search in Google Scholar

Dayton, W.R., Schollmeyer, J.V., Lepley, R.A., and Cortes, L.R. (1981). A calcium-activated protease possibly involved in myofibrillar protein-turnover-isolation of a low-calcium-requiring form of the protease. Biochim. Biophys. Acta659, 48–61.10.1016/0005-2744(81)90270-9Search in Google Scholar

De Gregore, J., Leone, G., Miron, A., Jakoi, L., and Nevins, J.R. (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA94, 7245–7250.Search in Google Scholar

Du, X.P., Saido, T.C., Tsubuki, S., Indig, F.E., Williams, M.J., and Ginsberg, M.H. (1995). Calpain cleavage of the cytoplasmic domain of the integrin β3 subunit. J. Biol. Chem.270, 26146–26151.10.1074/jbc.270.44.26146Search in Google Scholar

Fischer, S., Vandekerckhove, J., Ampe, C., Traub, P., and Weber, K. (1986). Protein-chemical identification of the major cleavage sites of the Ca2+ proteinase on murine vimentin, the mesenchymal intermediate filament protein. Biol. Chem. Hoppe-Seyler367, 1147–1152.10.1515/bchm3.1986.367.2.1147Search in Google Scholar

Fuchs, E. and Weber, K. (1994). Intermediate filaments – structure, dynamics, function, and disease. Annu. Rev. Biochem.63, 345–382.10.1146/annurev.bi.63.070194.002021Search in Google Scholar

Gabrijelcic-Geiger, D., Mentele, R., Meisel, B., Hinz, H., Assfalg-Machleidt, L., Machleidt, W., Moller, A., and Auerswald, E.A. (2001). Human μ-calpain: simple isolation from erythrocytes and characterization of autolysis fragments. Biol. Chem.382, 1733–1737.10.1515/BC.2001.209Search in Google Scholar

Ghosh, M., Shanker, S., Siwanowicz, I., Mann, K., Machleidt, W., and Holak, T.A. (2005). Proteolysis of insulin-like growth factor binding proteins (IGFBPs) by calpain. Biol. Chem.386, 85–93.10.1515/BC.2005.011Search in Google Scholar

Glading, A., Lauffenburger, D.A., and Wells, A. (2002). Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol.12, 46–54.10.1016/S0962-8924(01)02179-1Search in Google Scholar

Goll, D.E., Thompson, V.F., Li, H.Q., Wei, W., and Cong, J.Y. (2003). The calpain system. Physiol. Rev.83, 731–801.10.1152/physrev.00029.2002Search in Google Scholar

Harper, J.W. and Elledge, S.J. (1996). Cdk inhibitors in development and cancer. Curr. Opin. Genet. Dev.6, 56–64.10.1016/S0959-437X(96)90011-8Search in Google Scholar

Harris, A.S., Croall, D.E., and Morrow, J.S. (1988). The calmodulin-binding site in α-fodrin is near the calcium-dependent protease-I cleavage site. J. Biol. Chem.263, 15754–15761.10.1016/S0021-9258(19)37652-5Search in Google Scholar

Huang, Y. and Wang, K.K. (2001). The calpain family and human disease. Trends Mol. Med.7, 355–362.10.1016/S1471-4914(01)02049-4Search in Google Scholar

Inomata, M., Hayashi, M., Nakamura, M., Saito, Y., and Kawashima, S. (1989). Properties of erythrocyte-membrane binding and autolytic activation of calcium-activated neutral protease. J. Biol. Chem.264, 18838–18843.10.1016/S0021-9258(18)51543-XSearch in Google Scholar

Inomata, M., Saito, Y., Kon, K., and Kawashima, S. (1990). Binding-sites for calcium-activated neutral protease on erythrocyte membranes are not membrane phospholipids. Biochem. Biophys. Res. Commun.171, 625–632.10.1016/0006-291X(90)91192-USearch in Google Scholar

Irwin, M., Marin, M.C., Phillips, A.C., Seelan, R.S., Smith, D.I., Liu, W.G., Flores, E.R., Tsai, K.Y., Jacks, T., Vousden, K.H., and Kaelin, W.G. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature407, 645–648.10.1038/35036614Search in Google Scholar

Kalus, W., Baumgartner, R., and Renner, C., Noegel, A., Chan, F.K.M., Winoto, A., and Holak, T.A. (1997). NMR structural characterization of the CDK inhibitor p19 (INK4d). FEBS Lett.401, 127–132.10.1016/S0014-5793(96)01465-2Search in Google Scholar

Khorchid, A. and Ikura, M. (2002). How calpain is activated by calcium. Nat. Struct. Biol.9, 239–241.10.1038/nsb0402-239Search in Google Scholar

Kuboki, M., Ishii, H., and Kazama, M. (1987). Procalpain is activated on the plasma-membrane and the calpain acts on the membrane. Biochim. Biophys. Acta929, 164–172.10.1016/0167-4889(87)90172-8Search in Google Scholar

Kuboki, M., Ishii, H., and Kazama, M. (1990). Characterization of calpain-I binding-proteins in human erythrocyte plasma-membrane. J. Biochem.107, 776–780.10.1093/oxfordjournals.jbchem.a123124Search in Google Scholar

Lee, W.J., Adachi, Y., Maki, M., Hatanaka, M., and Murachi, T. (1990). Factors influencing the binding of calpain-I to human erythrocyte inside-out vesicles. Biochem. Int.22, 163–171.Search in Google Scholar

Leone, G., DeGregori, J., Yan, Z., Jakoi, L., Ishida, S., Williams, R.S., and Nevins, J.R. (1998). E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev.12, 2120–2130.10.1101/gad.12.14.2120Search in Google Scholar

Li, H., Thompson, V.F., and Goll, D.E. (2004). Effects of autolysis and properties of μ-and m-calpain. Biochim. Biophys. Acta1691, 91–103.10.1016/j.bbamcr.2003.12.006Search in Google Scholar

Mellgren, R.L. (1980). Canine cardiac calcium-dependent proteases – resolution of two forms with different requirements for calcium. FEBS Lett.109, 129–133.10.1016/0014-5793(80)81326-3Search in Google Scholar

Moldoveanu, T., Hosfield, C.M., Lim, D., Elce, J.S., Jia, Z.C., and Davies, P.L. (2002). A Ca2+ switch aligns the active site of calpain. Cell108, 649–660.10.1016/S0092-8674(02)00659-1Search in Google Scholar

Moldoveanu, T., Hosfield, C.M., Lim, D., Jia, Z., and Davies, P.L. (2003). Calpain silencing by a reversible intrinsic mechanism. Nat. Struct. Biol.10, 371–378.10.1038/nsb917Search in Google Scholar

Molinari, M., Anagli, J., and Carafoli, E. (1994). Ca2+-activated neutral protease is active in the erythrocyte-membrane in its nonautolyzed 80-kDa form. J. Biol. Chem.269, 27992–27995.10.1016/S0021-9258(18)46885-8Search in Google Scholar

Morgan, D.O. (1995). Principles of Cdk regulation. Nature374, 131–134.10.1038/374131a0Search in Google Scholar

Nicotera, P., Hartzell, P., Baldi, C., Svensson, S.A., Bellomo, G., and Orrenius, S. (1986). Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system. J. Biol. Chem.261, 4628–4635.10.1016/S0021-9258(18)66917-0Search in Google Scholar

Pal, G.P., De Veyra, T., Elce, J.S., and Jia, Z.C. (2003). Crystal structure of a μ-like calpain reveals a partially activated conformation with low Ca2+ requirement. Structure11, 1521–1526.10.1016/j.str.2003.11.007Search in Google Scholar

Patel, Y.M. and Lane, M.D. (2000). Mitotic clonal expansion during preadipocyte differentiation: calpain-mediated turnover of p27. J. Biol. Chem.275, 17653–17660.10.1074/jbc.M910445199Search in Google Scholar

Pavletich, N.P. (1999). Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol.287, 821–828.10.1006/jmbi.1999.2640Search in Google Scholar

Pines, J. (1996). Cell cycle: reaching for a role for the CDKs proteins. Curr. Biol.6, 1399–1402.10.1016/S0960-9822(96)00741-5Search in Google Scholar

Renner, C., Baumgartner, R., Noegel, A.A., and Holak, T.A. (1998). Backbone dynamics of the CDK inhibitor p19INK4d studied by N-15 NMR relaxation experiments at two field strengths. J. Mol. Biol.283, 221–229.10.1006/jmbi.1998.2079Search in Google Scholar

Ruas, M. and Peters, G. (1998). The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta1378, 115–177.10.1016/S0304-419X(98)00017-1Search in Google Scholar

Russo, A.A., Tong, L., Lee, J.O., Jeffrey, P.D., and Pavletich, N.P. (1998). Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature395, 237–243.10.1038/26155Search in Google Scholar

Sasaki, T., Kikuchi, T., Yumoto, N., Yoshimura, N., and Murachi, T. (1984). Comparative specificity and kinetic-studies on porcine calpain-I and calpain-Ii with naturally-occurring peptides and synthetic fluorogenic substrates. J. Biol. Chem.259, 2489–2494.10.1016/S0021-9258(18)90773-8Search in Google Scholar

Serrano, M. (1997). The tumor suppressor protein p16INK4a. Exp. Cell Res.237, 7–13.10.1006/excr.1997.3824Search in Google Scholar

Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602.10.1016/S0092-8674(00)81902-9Search in Google Scholar

Sherr, C.J. and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13, 1501–1512.10.1101/gad.13.12.1501Search in Google Scholar PubMed

Smialowski, P., Singh, M., Mikolajka, A., Majumdar, S., Joy, J.K., Nalabothula, N., Krajewski, M., Degenkolbe, R., Bernard, H.U., and Holak, T.A (2005). NMR and mass spectrometry studies of putative interactions of cell cycle proteins pRb and CDK6 with cell differentiation proteins MyoD and ID-2. Biochim. Biophys. Acta1750, 48–60.10.1016/j.bbapap.2005.03.012Search in Google Scholar PubMed

Spencer, M.J., Croall, D.E., and Tidball, J.G. (1995). Calpains are activated in necrotic fibers from Mdx dystrophic mice. J. Biol. Chem.270, 10909–10914.10.1074/jbc.270.18.10909Search in Google Scholar PubMed

Stabach, P.R., Cianci, C.D., Glantz, S.B., Zhang, Z.S., and Morrow, J.S. (1997). Site-directed mutagenesis of αII spectrin at codon 1175 modulates its μ-calpain susceptibility. Biochemistry36, 57–65.10.1021/bi962034iSearch in Google Scholar PubMed

Strelkov, S.V., Herrmann, H., Geisler, N., Wedig, T., Zimbelmann, R., Aebi, U., and Burkhard, P. (2002). Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J.21, 1255–1266.10.1093/emboj/21.6.1255Search in Google Scholar PubMed PubMed Central

Tompa, P. and Friedrich, P. (2000). Kinetic analysis of human μ-calpain autolysis. In: Calpain Methods and Protocols, J.S. Elce, ed. (Totowa, NJ, USA: Humana Press), pp. 129–136.10.1385/1-59259-050-0:129Search in Google Scholar

Tsutsumi, M., Tsai, Y.C., Gonzalgo, M.L., Nichols, P.W., and Jones, P.A. (1998). Early acquisition of homozygous deletions of p16/p19 during squamous cell carcinogenesis and genetic mosaicism in bladder cancer. Oncogene17, 3021–3027.10.1038/sj.onc.1202228Search in Google Scholar

Weinberg, R.A. (1995). The retinoblastoma protein and cell-cycle control. Cell81, 323–330.10.1016/0092-8674(95)90385-2Search in Google Scholar

Zindy, F., Besten, W., Chen, B., Rehg, J.E., Latres, E., Barbacid, M., Pollard, J.W., Sherr, C.J., Cohen, P.E., and Roussel, M.F. (2001). Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18Ink4c and p19Ink4d. Mol. Cell. Biol.9, 3244–3255.10.1128/MCB.21.9.3244-3255.2001Search in Google Scholar PubMed PubMed Central

Published Online: 2006-03-17
Published in Print: 2006-03-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.044/html
Scroll to top button