Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access June 15, 2019

Effect of temperature on the fatigue behavior of asphalt binder

  • André K. Kuchiishi , João Paulo B. Carvalho , Iuri S. Bessa EMAIL logo , Kamilla L. Vasconcelos and Liedi L.B. Bernucci
From the journal Applied Rheology

Abstract

Asphalt pavement is under different climatic conditions throughout its service life, which means that fatigue cracking does not occur at a specific temperature, but at a temperature range. The main objective of this paper is to evaluate the influence of different temperatures in the fatigue life of two asphalt binders: a non-modified binder (penetration grade 30/45) and a highly polymermodified binder (HPMB). The fatigue resistance characterization was performed by means of a linear amplitude sweep (LAS) test at the temperatures of 10, 15, 20, 25, and 30°C using a dynamic shear rheometer (DSR). From the dynamic shear modulus (|G*|) results, adhesion loss was observed between the binder and the rheometer parallel plate at the lower temperature of 10°C,while at higher temperatures (25 and 30°C) plastic flow was observed rather than fatigue damage. Therefore, considering that the actual test procedure does not specify the testing temperature, the evaluation of failure mechanism is essential to validate test results, because the random selection of test temperature might lead to inconsistent data.

References

[1] Kennedy T.W., Huber G.A., Harrigan E.T., Cominsky R.J., Hughes C.S., Von Quintus H., et al., Superior performing asphalt pavements (Superpave): the product of the SHRP asphalt research program, In: Strategic Highway Research Program, SHRP-A-410, National Research Council, Washington, DC, 1994Search in Google Scholar

[2] Kim Y.R., Modeling of asphalt concrete, 2nd ed., McGraw-Hill Construction, New York, 2009Search in Google Scholar

[3] Johnson C.M., Estimating asphalt binder fatigue resistance using an accelerated test method, PhD thesis, University of Wisconsin- Madison, Madison, US, 2010Search in Google Scholar

[4] Bahia H.U., Hanson D.I., Zeng M., Zhai H., Khatri M.A., Anderson R.M., Characterization of modified asphalt binders in Superpave mix design, In: NCHRP Report 459, National Cooperative Highway Research Program, Washington, DC, 2001Search in Google Scholar

[5] Kim Y.R., Little D.N., One-dimensional constitutive modeling of asphalt concrete, J. Eng. Mech., 1990, 116 (4), 751-772.10.1061/(ASCE)0733-9399(1990)116:4(751)Search in Google Scholar

[6] Park S.W., Kim Y.R., Schapery R.A., A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mech. Mater., 1996, 24, 241-255.10.1016/S0167-6636(96)00042-7Search in Google Scholar

[7] Hou T., Fatigue performance prediction of North Carolina mixtures using simplified viscoelastic continuum damage model, PhD thesis, North Carolina State University, Raleigh, US, 2009Search in Google Scholar

[8] Underwood B.S., Baek C., Kim Y.R., Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis, Transp. Res. Rec., 2012, 2296, 36-45.10.3141/2296-04Search in Google Scholar

[9] Martins A.T., Contribuição para a validação do ensaio de resistência ao dano por fadiga para ligantes asfálticos, MSc thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2014, (in Portuguese)Search in Google Scholar

[10] Haddadi F., Ameri M., Mirabimoghadam M.H., Hosseini H.R.A., Validation of a simplified method in viscoelastic continuum damage (VECD) model developed for flexural mode of loading, Constr. Build. Mater., 2015, 95, 892-897.10.1016/j.conbuildmat.2015.07.184Search in Google Scholar

[11] Nascimento L.A.H., Implementation and validation of the viscoelastic continuum damage theory for asphalt mixture and pavement analysis in Brazil, PhD thesis, North Carolina State University, Raleigh, US, 2015Search in Google Scholar

[12] Safaei F., Castorena C., Material nonlinearity in asphalt binder fatigue testing and analysis, Mater. Des., 2017, 133, 376-389.10.1016/j.matdes.2017.08.010Search in Google Scholar

[13] Nemati R., Dave E.V., Nominal property based predictive models for asphalt mixture complex modulus (dynamic modulus and phase angle), Constr. Build. Mater., 2018, 158, 308-319.10.1016/j.conbuildmat.2017.09.144Search in Google Scholar

[14] Hintz C., Velasquez R., Johnson C., Bahia H., Modification and validation of linear amplitude sweep test for binder fatigue specification, Transp. Res. Rec., 2011, 2207, 99-106.10.3141/2207-13Search in Google Scholar

[15] Hintz C., Understanding mechanisms leading to asphalt binder fatigue, PhD thesis, University of Wisconsin-Madison, Madison, US, 2012Search in Google Scholar

[16] Souza F.V., Modelo multi-escala para análise estrutural de compósitos viscoelásticos suscetíveis ao dano, MSc thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2005, (in Portuguese)Search in Google Scholar

[17] Underwood B.S., Kim Y.R., Guddati M.N., Improved calculation method of damage parameter in viscoelastic continuum damage model, Int. J. Pavement. Eng., 2010, 11 (6), 459-476.10.1080/10298430903398088Search in Google Scholar

[18] Safaei F., Castorena C., Kim Y.R., Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling, Mech. Time-Depend. Mat., 2016, 20, 299-323.10.1007/s11043-016-9304-1Search in Google Scholar

[19] AASHTO M 320: Standard specification for performance-graded asphalt binder, American Association of State Highway and Transportation Oflcials, Washington, DC, 2015.Search in Google Scholar

[20] Deacon J.A., Harvey J.T., Tayebali A., Monismith C.L., Influence of binder loss modulus on the fatigue performance of asphalt concrete pavements, In: Proceedings of the 1997 Annual Meeting of the Association of Asphalt Paving Technologists (17-19 March 1997, Salt Lake City, US), Association of Asphalt Paving Technologists (AAPT), 1997, 633-685Search in Google Scholar

[21] Anderson D., Le Hir Y.M., Marasteanu M.O., Planche J.P., Martin D., Gauthier G., Evaluation of fatigue criteria for asphalt binders, Transp. Res. Rec., 2001, 1766, 48-56.10.3141/1766-07Search in Google Scholar

[22] Quintero C.F.Q., Momm L., Leite L.F.M., Bernucci L.L.B., Effect of asphalt binder hardness and temperature on fatigues life and complex modulus of hot mixes, Constr. Build. Mater., 2016, 114, 755-762.10.1016/j.conbuildmat.2016.03.161Search in Google Scholar

[23] Melo J.V.S., Trichês G., Evaluation of properties and fatigue life estimation of asphalt mixture modified by organophilic nanoclay, Constr. Build. Mater., 2017, 140, 364-373.10.1016/j.conbuildmat.2017.02.143Search in Google Scholar

[24] Safaei F., Hintz C., Investigation of the effect of temperature on asphalt binder fatigue, In: Proceedings of the Twelfth International Society for Asphalt Pavements (ISAP) Conference (1-5 June 2014, Raleigh, US), Taylor & Francis Group, 2014, 1491-150010.1201/b17219-181Search in Google Scholar

[25] Hintz C., Bahia H., Understanding mechanisms leading to asphalt binder fatigue in the dynamic shear rheometer, RoadMater. Pavement, 2013, 14 (S2), 231-251.10.1080/14680629.2013.818818Search in Google Scholar

[26] Safaei F., Castorena C., Temperature effects of linear amplitude sweep testing and analysis, Transp. Res. Rec., 2016, 2574, 92- 100.10.3141/2574-10Search in Google Scholar

[27] Timm D.H., Robbins M.M., Kluttz R., Full-scale structural characterization of a highly-polymer-modified asphalt pavement, In: Proceedings of the 90th Annual Meeting of the Transportation Research Board (23-27 January 2011, Washington, US), Transportation Research Board, 2011Search in Google Scholar

[28] Blazejowski K., Wójcik-Wisniewska M., Peciakowski H., Olszacki J., The performance of a highly modified binders for heavy duty asphalt pavements, Transp. Res. Proc., 2016, 14, 679-684.10.1016/j.trpro.2016.05.331Search in Google Scholar

[29] Bowers B.F., Diefenderfer S.D., Diefenderfer B.K., Laboratory evaluation of a plant-produced high polymer-content asphalt mixture, Transp. Res. Rec., 2017, 2631, 144-152.10.3141/2631-16Search in Google Scholar

[30] Gaspar M.S., Vasconcelos K.L., Silva A.H.M., Bernucci L.L.B., Highly modified asphalt binder for asphalt crack relief mix, Transp. Res. Rec., 2017, 2630, 110-117.10.3141/2630-14Search in Google Scholar

[31] AASHTO M 332: Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test, American Association of State Highway and Transportation Oflcials, Washington, DC, 2014.Search in Google Scholar

[32] ASTM D 2872: Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test), American Society for Testing and Materials, West Conshohocken, PA, 2012.Search in Google Scholar

[33] Fernandes M.R.S., Forte M.M.C., Leite L.F.M., Rheological evaluation of polymer-modified asphalt binders, Mater. Res., 2008, 11 (3), 381-386.10.1590/S1516-14392008000300024Search in Google Scholar

[34] Khattak M.J., Baladi G.Y., Fatigue and permanent deformation models for polymer-modified asphalt mixtures, Transp. Res. Rec., 2001, 1767, 135-145.10.3141/1767-17Search in Google Scholar

[35] Domingos, M.D.I., Faxina A.L., High-temperature properties and modeling of asphalt binders modified with SBR copolymer and PPA in the multiple stress creep and recovery (MSCR) test, Appl. Rheol., 2016, 26, 53830.Search in Google Scholar

[36] Bueno M., Garcia A., Partl M., Applications of strain-rate frequency superposition for bituminous binders, Appl. Rheol., 2015, 25, 65980.Search in Google Scholar

[37] AASHTO TP 101: Standard method for estimating damage tolerance of asphalt binders using the linear amplitude sweep, American Association of State Highway and Transportation Oflcials, Washington, DC, 2014.Search in Google Scholar

[38] Shenoy A., Fatigue testing and evaluation of asphalt binders using the dynamic shear rheometer, J. Test. Eval., 2002, 30 (4), 303-312.10.1520/JTE12320JSearch in Google Scholar

[39] Nuñez J.Y.M., Leonel E.D., Faxina A.L., Fatigue characteristics of modified asphalt binders using fracture mechanics, Eng. Fract. Mech., 2016, 154, 1-11.10.1016/j.engfracmech.2016.01.001Search in Google Scholar

[40] Pamplona T.F., Efeito da adição de ácido polifosfóricoemligantes asfálticos de diferentes fontes, MSc thesis, Universidade de São Paulo, São Carlos, Brazil, 2013, (in Portuguese)Search in Google Scholar

[41] Miró R., Martínez A.H., Moreno-Navarro F., Rubio-Gámez M.C., Effect of ageing and temperature on the fatigue behaviour of bitumens. Mater. Des., 2015, 86, 129-137.10.1016/j.matdes.2015.07.076Search in Google Scholar

[42] Saboo N., Kumar P., Performance characterization of polymer modified asphalt binders and mixes, Adv. Civ. Eng., 2016, 2016, 1-12.10.1155/2016/5938270Search in Google Scholar

[43] Harvey J.T., Tsai B.W., Effects of asphalt content and air void content on mix fatigue and stiffness, Transp. Res. Rec., 1996, 1543, 38-45.10.1177/0361198196154300105Search in Google Scholar

[44] Airey G.D., Rheological properties of styrene butadiene styrene polymer modified road bitumens, Fuel, 2003, 82, 1709-1719.10.1016/S0016-2361(03)00146-7Search in Google Scholar

[45] Zhu J., Birgisson B., Kringos N., Polymer modification of bitumen: advances and challenges, Eur. Polymer J., 2014, 54 (1), 18-38.10.1016/j.eurpolymj.2014.02.005Search in Google Scholar

[46] Willis J.R., Timm D.H., Kluttz R., Performance of a highly polymermodified asphalt binder test section at the National Center for Asphalt Technology pavement test track, Transp. Res. Rec., 2016, 2575, 1-9.10.3141/2575-01Search in Google Scholar

[47] Planche J.P., Anderson D.A., Gauthier G., Le Hir Y.M., Martin D., Evaluation of fatigue properties of bituminous binder, Mater. Struct., 2004, 37, 356-359.10.1007/BF02481683Search in Google Scholar

[48] Johnson C.M., Bahia H.U., Coenen A., Comparison of bitumen fatigue testing procedures measured in shear and correlations with four-point bending mixture fatigue, In: Proceedings of the Second Workshop on Four Point Bending (24-25 September 2009, Guimarães, Portugal), Universidade do Minho, 2009, 133-147Search in Google Scholar

[49] Shamborovskyy R., Development of a fatigue-based asphalt binder purchase specification for airfield asphalt, MSc thesis, The State University of New Jersey, New Brunswick, US, 2016Search in Google Scholar

[50] Kim Y.R., Underwood S., Mun S., Guddati M.N., Perpetual pavement evaluation using the viscoelastic continuum damage finite element program, In: Proceedings of the 2006 International Conference on Perpetual Pavement (13-15 September 2006, Columbus, US), 2006Search in Google Scholar

[51] Cao W., Norouzi A., Kim Y.R., Application of viscoelastic continuumdamage approach to predict fatigue performance of Binzhou perpetual pavements, J. Traflc Transport. Eng., 2016, 3 (2), 104- 115.10.1016/j.jtte.2016.03.002Search in Google Scholar

[52] Hintz C., Bahia H., Simplification of linear amplitude sweep test and specification parameter, Transp. Res. Rec., 2013, 2370, 10- 16.10.3141/2370-02Search in Google Scholar

[53] Wang C., Castorena C., Zhang J., Kim Y.R., Application of timetemperature superposition principle on fatigue failure analysis of asphalt binder, J. Mater. Civ. Eng., 2017, 29 (1), 04016194.10.1061/(ASCE)MT.1943-5533.0001730Search in Google Scholar

[54] Singh P., Swamy A.K., Probabilistic characterisation of damage characteristic curve of asphalt concrete mixtures, Int. J. Pavement Eng., 2019, 20 (6), 659-668.10.1080/10298436.2017.1321420Search in Google Scholar

Received: 2018-10-04
Accepted: 2019-04-18
Published Online: 2019-06-15

© 2019 André K. Kuchiishi et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/arh-2019-0004/html
Scroll to top button