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  Abstract:   Advances in slow-servo single point diamond 

turning enables fabrication of freeform optical elements. 

Freeform optical elements, which are by definition rota-

tionally non-symmetric, will have a profound importance 

in the future of optical technology. Historically, ortho gonal 

polynomials added onto conic sections have been exten-

sively used for description of optical surface shapes. More 

recently, local shape descriptors, specifically radial basis 

functions, have been investigated for optical shape descrip-

tion. In this paper, we reveal an efficient and accurate local-

ized hybrid method combining in one implementation 

assets of both radial basis functions and  φ -polynomials 

for freeform shape description, uniquely applicable across 

any aperture shape. Initial results show that the proposed 

method yields subnanometer accuracy with as few as 25 

terms of  φ -polynomials. Subnanometer accuracy is required 

for the stringent conditions of lithography and related preci-

sion optics applications. Less stringent conditions are also 

shown to be achieved with as few as 16 terms  φ -polynomials.  
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1     Introduction 
 The ability to fabricate optical elements with rota tionally 

non-symmetric features with nanometer accuracy is a 

new capability for the optics industry. With the recent 

developments in small tool grinding, polishing, and 

diamond turning, some pioneering examples of freeform 

optical elements are emerging in optics applications, such 

as in head worn displays (HWDs) [ 1 ,  2 ], projection systems 

[ 3 ], and infrared imagers [ 4 ]. These optical systems com-

prising freeform elements have certain advantages, such 

as having a better performance while also being more 

compact and lightweight. 

 The progress from rotationally symmetric surface 

manufacturing, i.e., aspheric elements, towards the 

manu facturing of rotationally non-symmetric optical 

surfaces challenges optical system designers to develop 

methods to describe optical surfaces with many uncom-

mon features. Full-aperture orthogonal  φ -polynomials, 

such as FRINGE or Born and Wolf Zernike polynomials [ 5 ], 

and more recently Q-polynomials [ 6 ] are commonly used 

to describe optical surfaces. Of a different nature, radial 

basis functions (RBFs) [ 7 ] were recently explored for the 

description of freeform optical surfaces [ 8 ]. 

 Although both descriptions have their own merits 

and limitations, both are successful in their specific 

optical applications. Although orthogonal  φ -polynomials 

provide numerical robustness and are well-behaved in 

terms of conditioning, each basis set is restrained to a spe-

cific geometry over which it is orthogonalized, such as a 

circular aperture. In optical system design, as the size of 

the part may change during optimization, renormaliza-

tion is required as the part diameter changes. Condition-

ing of a problem is defined with a condition number. An 

approximation with orthogonal polynomials is a well-

conditioned problem as the condition number is as small 

as one. As the condition number increases, the problem 

becomes ill-conditioned. Small numerical changes in an 

argument may cause large offsets in the solution when 

the system is ill-conditioned. Orthogonal  φ -polynomials, 

in explicit form, may also suffer from numerical ill-con-

ditioning, especially when their higher orders are uti-

lized to describe the optical surface. Recurrence relations 

then are a remedy for numerical instability associated 

with higher orders of orthogonal polynomials [ 9 ]. RBFs 
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are more general in terms of not conforming to any spe-

cific aperture shape, but may suffer from numerical ill-

conditioning causing numerical instabilities, especially 

when their shape is flat or excessive numbers of them are 

required to describe a freeform surface. In this paper, we 

describe a new local method based upon the partition 

of unity principle employing RBFs as weights for local 

partitions, and  φ -polynomials or RBFs as local surface 

descriptors for freeform optical surfaces. The concept of 

local shape descriptors is not new as it is central to dif-

ferential geometry [ 10 ]. In optics, it has been adopted in 

surface metrology using curvature sensing [ 11 ,  12 ] and in 

some cases combined with wavefront reconstruction [ 13 , 

 14 ], and stitching interferometry [ 15 ]. 

 This paper is organized as follows. In the next section, 

we briefly review RBFs and orthogonal  φ -polynomials as 

freeform surface descriptors. In Section 3, we detail the 

hybrid method based upon RBFs and local  φ -polynomials. 

In Section 4, we show numerical results showing the suc-

cessful description of a freeform surface designed as a 

stressing example of extreme asymmetry and spatial fre-

quency. The last section concludes the paper.  

2     RBFs and orthogonal 
 φ -polynomials 

 In order to describe rotationally symmetric surfaces, a power 

series representation proposed by Abbe was used [ 16 ] in early 

optical systems. However, a power series  representation 

suffers from numerical ill-conditioning when extended 

beyond as few as six terms. Recently, Forbes proposed and 

derived  φ -polynomials that are orthogonal in slope [ 6 ] for 

improving the manufactur ability of aspheres [ 17 ] departing 

from the historical power series representation. 

 For rotationally symmetric and non-symmetric 

optical surfaces, orthogonal polynomials, such as the 

Zernike that are orthogonal over circular apertures offer 

a powerful surface description capacity [ 9 ]. Because the 

H.H. Hopkins wavefront aberration function may also 

be described in terms of Zernike polynomials [ 18 ], the 

Zernike polynomials provide a mapping between an 

optical surface under consideration and wavefront aber-

rations, central to optical system design. 

 In Boyd and Yu [ 19 ], where seven spectral methods 

were compared for approximations, each method ’ s virtues 

and drawbacks were listed; Zernike basis is listed as one of 

the best spectral methods due to its spectral convergence 

and fewer number of basis elements for the same accu-

racy as compared to that of the Chebyshev-Fourier basis. 
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 Figure 1      (A) Numerical ill-conditioning associated with Z 
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However, when Zernike polynomials are used in higher 

orders in the explicit form, which might often be the case 

for irregular asymmetric optical freeform surfaces, they 

also suffer from round-off errors produced by numeri-

cal cancelation. In  Figure 3  of [ 19 ] (see Figure 3 in Boyd 

and Yu), severe ill-conditioning of Zernike polynomials in 

explicit form for high-order terms (power series) is com-

pared to three-term recurrence relation computations. In 

 Figure 1 A, a high order Zernike poly nomial with its condi-

tioning problems is shown side by side in  Figure 1 B with 

its remedy, the recurrence relations. The recurrence rela-

tions for Zernike polynomials are given in [ 9 ,  19 ].   

 A freeform surface might be represented as a summa-

tion of orthogonal polynomials as follows: 
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 where  u  represents the radial normalized coordinate,  n  

represents the radial polynomial number, and  m  is the 

azimuthal order. In general, a conic section of choice 

might be used (i.e., a best-fit conic) in order to simplify 

additional terms. In Eq. ( 1 ),   m m
nu Z  represents the standard 

Born and Wolf Zernike polynomials of order  m . Zernike 

polynomials are one-sided Jacobi polynomials in radius 

with a Fourier series in angular direction. 

 A possible bottleneck to the accuracy with which a 

surface may be represented not only includes the associ-

ated numerical instabilities with high-order terms as illus-

trated in  Figure 1 A, it also includes the number of terms 

considered. Sometimes a few thousand terms might be 

required to describe the surface, as recently shown by 

Kaya et al. [ 20 ,  21 ]. It is also desirable and important to 

reduce the number of terms required with  φ -polynomial 

descriptions due to efficacy reasons as well as efficiency 

in relation to computational time and memory space. 

Appropriately, a freeform surface description should also 

not be limited to circular apertures. 

 Extending his work on aspheric surfaces, Forbes 

recently derived gradient orthogonal Q-polynomials for 

freeform surface description along with their recurrence 

relations [ 22 ]. A comparison of the gradient orthogonal 
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 Figure 3      (A) Ill-conditioning of RBFs when   ε  →  0; (B) RBF-QR method removing ill-conditioning for the Runge function.    

Q-polynomials with Zernike polynomials was carried out in 

[ 21 ], pointing to the expected equivalence of these polyno-

mials in terms of the accuracy of freeform shape description. 

 RBFs can be seen as a general description methodo-

logy forsaking the orthogonality of the polynomials in 

exchange for much improved simplicity and geometric 

flexibility in terms of aperture shapes. The RBF descrip-

tion of a surface is based upon a summation of a basic 

function translated across the aperture of the optical 

element. Linear combinations of the translates of the 

basic function form the foundation of this surface descrip-

tion methodology. RBFs provide comparable accuracy to 

polynomials, and spectral convergence might be achieved 

[ 23 ]. Cakmakci et al. made use of Gaussians centered uni-

formly over an aperture for designing of a HWD freeform 

surface [ 8 ]. A RBF freeform surface is described as: 
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 where  a n   represents the weights in the combination,   x    n   
represents the centers,   x   a point in the aperture,   ε   is the 

shape factor, and   φ   are the basis functions. An example of 

a freeform RBF surface description is shown in  Figure 2 . In 

 Figure 2 , we can clearly see individual Gaussian RBFs along 

with the overall approximated surface. The overall RBF 

 Figure 2      Forming of a RBF surface with Gaussians,   ε   = 0.19 mm -1  

over a rectangular aperture 40 mm  ×  80 mm.    

surface touches all of the Gaussian peaks at their center. A 

zero height surface in solid green is also shown in the center.  
 Unfortunately, giving up the orthogonality constraint 

does not come without a price with RBFs. As a conse-

quence, severe ill-conditioning may occur, especially 

when the shape parameter   ε   is small, which corresponds 

to a flattening of the basis functions. In the flat basis func-

tion limit, Driscoll and Fornberg showed that limiting 

interpolants exist and converge to the form of polynomials 

[ 24 ]. In  Figure 3 , we show a severe ill-conditioning of the 

RBF approach along with the remedy for ill-conditioning, 

using the RBF-QR method. 

 Fornberg et al. devised a QR approach [ 25 ] based upon 

the polynomial expansions of Gaussians in order to  overcome 

the numerical ill-conditioning associated with RBFs. Their 

method expands the Gaussians over Chebyshev polynomi-

als for the radial component, with a  Gaussian weighting 

function along that dimension, and trigonometric functions 

for the angular components. The method then applies QR 

decomposition on the resulting expansion matrix in order to 

yield a well-conditioned basis. When considering the appli-

cation to large shape factors as well, the RBF-QR method 

may suffer from numerical overflow as the expansion coef-

ficients start to diverge quickly. In this case, the RBF method 

shown in Eq. ( 2 ) may be used instead given that in this case 

RBFs mostly do not suffer from ill-conditioning. 

 More recently, Fasshauer and McCourt devised 

another RBF-QR approach [ 26 ]. This method works by 

deploying eigenfunctions of Gaussians that are related to 

Hermite polynomials. Fasshauer and McCourt also suggest 

using a regression method with RBF-QR, which consists 

of internally truncating the data to lower rank approxi-

mations to maintain accurate approximants [ 26 ]. This 

large data reduction requires that the original surface is 

greatly oversampled. Whenever high orders of orthogonal 

polynomials are necessary within the use of the RBF-QR 

method, recurrence relations can be used to remove ill-

conditioning associated with these polynomials [ 27 ]. For a 

more detailed description of RBF-based methods, readers 

are encouraged to read the book by Fasshauer [ 7 ]. 
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 The RBF-QR method, while correctly removing ill- 

conditioning associated with RBFs of small shape factors, 

has prominent aspects notable for optical designers. As the 

method itself expands the Gaussians onto polynomials, it 

makes use of a large number of terms in the  expansion in 

order to represent the Gaussians with desired accuracies. 

The Chebyshev polynomials with trigonometric modes are 

only orthogonal over circular apertures.  

3     Hybrid RBF and local 
 φ -polynomials method 

 Inspired by the intuitive notion of local shape descriptions 

for freeform surface together with some of the fundamen-

tal ideas associated with RBF-QR presented by Fornberg 

et al. [ 25 ] and Fasshauer and McCourt [ 26 ], we have devel-

oped a hybrid method employing local  φ -polynomials as 

orthogonal polynomials for local surface description and 

combining the local descriptions based upon these poly-

nomials over circular subapertures with Wendland ’ s com-

pactly supported RBFs (CSRBFs) as a global description. 

In this form, this method may be applied to any overall 

shaped aperture. Conceptually, the method can be thought 

of as follows. Instead of translating RBFs with their asso-

ciated centers over the aperture of the optical elements, 

we translate the coordinate origin of the  φ -polynomials 

to the centers of the local circular subapertures. Then 

we carry out a polynomial regression fit over the local 

subapertures. The contributions of each subaperture 

are combined with Wendland ’ s CSRBFs that serve as the 

weights in order to render the overall surface description. 

Wendlands ’  CSRBFs have been used as weights in local 

partitions in the context of surface interpolation [ 7 ]. It is 

important to note that accuracy obtained over the local 

subapertures is carried over to the global description as 

for any other partition of unity method. 

 The algorithm associated with this hybrid method for 

the description of the freeform surfaces can be summa-

rized in four steps: 

 –   Step 1:  Decompose the domain into smaller circular 

subapertures and record the centers and radii of the 

subapertures. Depending upon the required accuracy 

over the overall fit, the radii of the subapertures can 

be adjusted. A sample domain decomposition is 

shown in  Figure 4 .  
 –   Step 2:  For each point where the global fit is evaluated, 

find the subapertures that it belongs to and build a 

weight matrix. We built a weight matrix to identify the 

contributions of local fits to the overall global fit. The 
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 Figure 4      Domain decomposition with circular subapertures of 

radius 1.33 mm over a 2 mm  ×  2 mm square aperture.    

point may be located at the intersection of the more 

than one overlapping subapertures. In this case, each 

subaperture intersection will contribute to the overall 

surface at the points in the intersection according to the 

weights defined in this step. The radii of the subapertures 

match the compact support of Wendland ’ s CSRBFs. 

We make use of Wendland ’ s CSRBFs for the weight 

assignment as they provide sparse band-diagonal 

approximation matrices through omitting the points 

falling beyond their compact support. This approach 

makes the method even more local as compared to that 

of Gaussians, because Gaussians include a tail section 

spanning the whole aperture. This is especially useful 

when large sets of sampling and evaluation points are 

used. A Wendland ’ s C 2  CSRBF, as a weight function, is 

given as: 

    
( ) ( )4

( , ) 1- - 4 - 1 ,w ε ε
+

= +i i ix x x x x x   (3)
 

  where   x    i   denotes the center of the subaperture that 

the point   x       falls within. The subscript after the first 

term shows that there is a cut-off after the compact 

support  in function declaration. In  Figure 5 , several 

Wendland ’ s CSRBFs that might be used as weight 

functions are shown.  
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 Figure 5      Wendland ’ s CSRBFs for weight assignment.    
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 Weights are assigned after they are normalized 

according to the Shepard method, a moving least-squares 

method, such that contributions from multiple subaper-

tures add up to unity. 
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 In Eq. ( 4 ),  f (  x    i  ) represents the sample sag value at 

location   x    i  , and  w (  x    i  ,  x  ) represents the weights computed 

according to the weight function given in Eq. ( 3 ). 

 –   Step 3:  For each subaperture, carry out a local 

approximation with local  φ -polynomials shifted to the 

centers of subapertures. A least-squares matrix can be 

formed with local samples within each subaperture 

and as many  φ -polynomials as desired with the 

recurrence relations. We established, for example, 

that a small subset of FRINGE Zernike polynomials 

provides subnanometer accuracies within each 

subaperture. To speed up the determination 

of sample and evaluation points within each 

subaperture, a kd-tree data structure is built for all 

sample and evaluation points separately after the 

domain decomposition step. Local samples and local 

evaluation points are found by querying the kd-trees 

for each subaperture. In this way, we can locate the 

points inside the subaperture in a fast and efficient 

manner. The algorithm complexity reduces from an 

 O ( N ) procedure to an  O [ log ( N )] process. 

 –   Step 4:  For each subaperture, combine the local 

surface description computed in step 3 with the 

weights computed in step 2 to form the overall surface 

description. With the weights and local surface 

descriptions computed in previous steps, this step 

reduces to accumulating local results with weights.  

4    Numerical experiments 
 In this section, we describe an application of the hybrid 

RBF and local  φ -polynomials method, specifically Zernike 

polynomials, for the description of an extremely asym-

metric surface. The surface is chosen to be a stressing 

example of departure from rotational symmetry. It does, 

however, represent a descriptive case for spatial frequency. 

The surface is an F/1 parabola over an 80 mm  ×  80 mm rec-

tangular domain with several 12.5  μ m – 100  μ m isotropic 

and anisotropic bumps distributed over the aperture. An 

analytical description of the surface is given in Eq. ( 5 ). In 

 Figure 6 , we show the F/1 parabola (with several bumps 

over the rectangular aperture) to mainly show the overall 

sag of the surface. 
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 In  Figure 7 , we isolate the bumps on the surface. 

There are radially symmetric and anisotropic bumps 

of several heights in the range between 12.5  μ m and 

100  μ m. We have sampled the representative freeform 

surface with 600  ×  600 uniform samples, and evaluated 

the overall fit with 120  ×  120 uniform points. The shape 

parameter for the weight function, which is a Wendland ’ s 

C 2  function, is 1.25 mm -1 . As for the local approximations, 

we have made use of 36 FRINGE Zernike polynomials. 

We have decomposed the domain with 100  ×  100 overlap-

ping circular subapertures. The radius of each subaper-

ture is 800  μ m. In  Figure 8 , we show the decomposition 

of the full  aperture between -2 mm and 2 mm with 800  μ m 

circular subapertures. We can observe the uniform dis-

tribution of samples (blue points) along with a grid 

of uniform evaluation points (red points). As shown 

in our earlier work, there is actually no difference in 

surface approximation performance of  φ -polynomials 

with uniform or clustered samples when the number of 

 φ -polynomials is low [ 21 ], such as in this case, 36, we 

make use of a uniform grid of samples across the overall 

aperture.   
 Although the number of the FRINGE Zernike poly-

nomials used in local subapertures is only 36, we have 

obtained excellent approximation errors on the orders of 

the subnanometer. 

10
5

-40
-20

20
40 40

20
0

-20
-40

x (mm)y (mm)

z 
(m

m
)

0

 Figure 6      F/1 Parabola where 12.5  μ m – 100  μ m bumps may be 

 visualized in Figure 7.    
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 In  Figure 9 , we show the peak-to-valley (PV) approxi-

mation error profile for the F/1 parabola with several 

bumps. Results show that the approximation PV errors are 

less than or equal to around 0.3 nm. There are no edge-

related oscillation errors even with uniform sampling. 

Nonetheless, errors concentrate around the 25  μ m and 

50   μ m anisotropic bumps whose slopes are the largest 

[see lines 2 and 3 in Eq. ( 5 )]. The overall root mean square 

error for this description is 0.01 nm. Given the oscillatory 

nature of the errors, while at subnanometer scale, smooth-

ing of the computed surface would further decrease their 

magnitude.  
 We have carried out the F/1 parabola with bumps 

test with 25, 36, and 64 Zernike polynomials in local sub-

aperture surface approximations. We have recorded the 

radius of the subaperture along with the number of sub-

apertures in order to reach subnanometer PV errors. The 

shape parameter for Wendland ’ s CSRBFs for each experi-

ment is the inverse of the radius of the subapertures listed 

in column 2 of  Table 1.   Table 1  summarizes the results. 

As the number of local Zernike polynomials in the local 

approximation increases from 25 to 64, the radius of the 
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 Figure 7      The 12.5  μ m – 100  μ m isotropic and anisotropic bumps 

configuration on F/1 parabola over an 80 mm  ×  80 mm square 

aperture.    
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 Figure 8      Decomposition of the aperture of an F/1 parabola with 

800  μ m circular subapertures along with uniformly distributed 

sample points, shown only for a -2 mm to 2 mm cross-section.    
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 Figure 9      Approximation error profile for an F/1 parabola with 

several bumps showing the maximum PV errors on the orders of the 

subnanometer with only 36 FRINGE Zernike polynomials across an 

80 mm  ×  80 mm aperture.    

subaperture increases from 610  μ m to 1.33 mm. At the 

same time, the number of subapertures decreases from 

130  ×  130 to 60  ×  60. The more Zernike polynomials that are 

added into the approximation set, the more capable the 

method becomes in terms of locally describing a freeform 

surface, and thus we can increase the radius of the subap-

erture. This trade-off is well captured in  Table 1 .  

 In  Table 1 , we also compare a simple version of the 

Gaussian RBFs as local surface approximants to that using 

a small number of Zernike polynomials needed to repre-

sent the surface using in both cases the hybrid method. 

In this investigation, we included a shape optimization, 

where   ε   was varied from 0.01 mm -1  to 10 mm -1  for Gauss-

ians over each subaperture. Every other parameter, i.e., 

number of samples and their uniform distribution, was 

kept the same. As we varied the number of Gaussians, 

results show that although local Gaussians within subap-

ertures provide accuracies around nanometers, Zernike 

polynomials provide accuracies on the orders of subna-

nometers. However, Gaussian RBF implementation may 

still be improved with different sampling and basis center 

distributions. In [ 19 ], different grid types were applied for 

approximation with Gaussian RBFs and results concluded 

that residual errors are comparable to polynomial approx-

imation counterparts. Also, in [ 28 ], the authors com-

pared different edge remedies for improving the errors 

of RBF approximations, including clustering the sample 

points towards the boundary and two possible Not-a-Knot 

 Table 1      Subnanometer PV errors with a small set of Zernike polyno-

mials (4th column) or Gaussian RBFs (5th column).  

 Cell count  Cell 
radius 

(mm) 

 Number of 
local basis 

elements 

 PV error 
 Zernike 

(nm) 

 PV error 
 Gaussian 

(nm) 

 60  ×  60  1.33  64  0.2  1.01 

 100  ×  100  0.8  36  0.31  2.29 

 130  ×  130  0.61  25  0.78  3.59 
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implementations. Without incurring any additional com-

putational cost, methods mentioned in [ 28 ] for improv-

ing Gaussian RBF approximation errors may be applied 

within each subdomain. 

 Instead of using a fixed uniform grid of samples and 

uniform decomposition of the overall aperture into sub-

apertures, an adaptive approach may be used instead 

for the domain decomposition and sampling steps. For 

example, Driscoll and Heryudono present an adaptive 

refinement method based upon residual subsampling 

[ 23 ]. This adaptive method clusters the samples and 

the subapertures around the steep regions, whereas it 

coarsens the samples and subapertures around the large 

smooth areas. By clustering the samples towards the 

steep gradients and locally increasing the density of sub-

apertures around the steep regions, more accuracy can be 

achieved and significant benefits in terms of cost, espe-

cially for local RBF approximations, can be gained, where 

a local shape optimization can be carried out based on 

the density of the RBF centers. 

 Another possible improvement for the Gaussian RBF 

approximations is to use an approach that is presented 

in [ 29 ] that allows selecting sample and center loca-

tions along with an optimum shape parameter for each 

and every RBF basis. This method has shown significant 

advantages compared with orthogonal polynomials in 1D 

such as the reduction in the number of basis elements as 

compared with Chebyshev polynomials [ 29 ]. 

 As an additional experiment, we have carried out an 

F/1 parabola with bumps with 16, 25, 36, and 64 Zernike 

polynomials in local subapertures while recording the 

radius of the subapertures and their total number in 

order to reach 10 nm PV accuracy. Results reported in 

 Table 2  show that as few as 16  φ -polynomials can describe 

this surface with 10 nm PV errors. As the number of 

 φ -polynomials decreases from 64 to 16, the radius of the 

subapertures decreases from 2.29 mm to 670  μ m, whereas 

the number of subapertures increases from 35  ×  35 to 

120  ×  120 to reach 10 nm PV errors. 

  In summary, the numerical experiments quantify that 

a small set of FRINGE Zernike polynomials, 25, are able to 

 Table 2      Illustration of 10 nm PV errors with a small set of Zernike 

polynomials.  

 Cell count  Cell radius 
(mm) 

 Number of local 
basis elements 

 PV error 
 (nm) 

 35  ×  35  2.29  64  10.06 

 57  ×  57  1.40  36  6.07 

 75  ×  75  1.07  25  9.35 

 120  ×  120  0.67  16  8.41 

describe the overall surface within a non-circular aperture 

with the hybrid RBF local Zernike method within subna-

nometer accuracies. The analysis further shows that fewer 

polynomials are needed if the requirement on accuracy is 

loosened.  

5    Conclusion 
 As the optics manufacturing industry is forging ahead in 

the advancement of their methods, freeform optical ele-

ments are going to be key components of optical systems in 

the near future. In this paper, we describe a fast, efficient 

hybrid method combining local approximants (i.e., RBFs 

or  φ -polynomials) and RBF global approximants. With 

this method, we are able to describe a freeform surface 

with, for example, only 25 FRINGE Zernike polynomials 

within subnanometer accuracy. With a simple RBF local 

approximant and 25 – 64 basis functions, nanometer-level 

accuracy was achieved. Because of its local nature and 

the ability to carry the local accuracies over to the overall 

surface description, this hybrid method reduces the 

number of basis functions required to describe a freeform 

surface. The method is highly efficient mainly because of 

three inherent properties. First, the method makes use of 

Wendland ’ s CSRBFs that are known to best handle large 

datasets; also they result in band diagonal approxima-

tion matrices that are simple to manipulate in algebraic 

systems. Second, to find the local samples and evaluation 

points, we make use of kd-trees for containment queries, 

which reduces computational complexity to an  O [ log ( N )] 

process. A third reason for efficiency is the fact that the 

number of local basis functions is kept to a minimum, 

which results in small approximation matrices. In the case 

of  φ -polynomials, using a small number of them allowed 

us to use uniform sampling without an approximation 

performance penalty. Reducing the number of Zernike 

polynomials to a minimum is also important because it 

facilitates understanding of the local optical properties of 

the surface for optical designers while providing compu-

tational advantages. We also note that there is no inher-

ent limit in terms of the number of local  φ -polynomials 

that may be used in the method; in order to achieve better 

accuracies than subnanometers, that is, machine preci-

sion, high-order polynomials may also be used within the 

local subapertures. Finally, the Q-polynomials or other 

 φ -polynomials may substitute within local subapertures 

the Zernike polynomials. However, a crucial step working 

with Q-polynomials is to accurately compute the curva-

ture of the best-fit sphere, which requires a mean sag over 
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the perimeter of the local subaperture as a targeted step 

into the hybrid algorithm.   
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