Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 28, 2006

Leucine aminopeptidases: diversity in structure and function

  • Mikiko Matsui , Jonathan H. Fowler and Linda L. Walling
From the journal Biological Chemistry

Abstract

Leucine aminopeptidases (LAPs) are metallopeptidases that cleave N-terminal residues from proteins and peptides. While hydrolyzing Leu substrates, LAPs often have a broader specificity. LAPs are members of the M1 or M17 peptidase families, and therefore the LAP nomenclature is complex. LAPs are often viewed as cell maintenance enzymes with critical roles in turnover of peptides. In mammals, the M17 and M1 enzymes with LAP activity contribute to processing peptides for MHC I antigen presentation, processing of bioactive peptides (oxytocin, vasopressin, enkephalins), and vesicle trafficking to the plasma membrane. In microbes, the M17 LAPs have a role in proteolysis and have also acquired the ability to bind DNA. This property enables LAPs to serve as transcriptional repressors to control pyrimidine, alginate and cholera toxin biosynthesis, as well as mediate site-specific recombination events in plasmids and phages. In plants the roles of the M17 LAPs and the peptidases related to M1 LAPs are being elucidated. Roles in defense, membrane transport of auxin receptors, and meiosis have been implicated.

:

Corresponding author

References

Albiston, A.L., Ye, S., and Chai, S.Y. (2004). Membrane bound members of the M1 family: more than aminopeptidases. Protein Pept. Lett.11, 491–500.10.2174/0929866043406643Search in Google Scholar

Barrett, A.J. (1995). Proteolytic Enzymes: Aspartic and Metallo Peptidases, Methods in Enzymology Vol. 248 (New York, USA: Academic Press).Search in Google Scholar

Barrett, A.J., Rawlings, N.D., and Woesner, J.F. (2004.). Handbook of Proteolytic Enzymes (San Diego, USA: Elsevier/Academic Press).Search in Google Scholar

Bartling, D., and Nosek, J. (1994). Molecular and immunological characterization of leucine aminopeptidase in Arabidopsis thaliana: a new antibody suggests a semi-constitutive regulation of a phylogenetically old enzyme. Plant Sci.99, 199–209.10.1016/0168-9452(94)90177-5Search in Google Scholar

Behari, J., Stagon, L., and Calderwood, S.B. (2001). pepA, a gene mediating pH regulation of virulence genes in Vibrio cholerae. J. Bacteriol.183, 178–188.10.1128/JB.183.1.178-188.2001Search in Google Scholar

Beninga, J., Rock, K.L., and Goldberg, A.L. (1998). Interferon-γ can stimulate post-proteasomal trimming of the N-terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem.273, 18734–18742.10.1074/jbc.273.30.18734Search in Google Scholar

Botbol, V. and Scornik, O.A. (1991). Measurement of instant rates of protein degradation in the livers of intact mice by the accumulation of bestatin-induced peptides. J. Biol. Chem.266, 2151–2157.10.1016/S0021-9258(18)52222-5Search in Google Scholar

Boter, M., Ruiz-Rivero, O., Abdeen, A., and Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev.18, 1577–1591.10.1101/gad.297704Search in Google Scholar PubMed PubMed Central

Cappiello, M., Alterio, V., Amodeo, P., Del Corso, A., Scaloni, A., Pedone, C., Moschini, R., De Donatis, G.M., De Simone, G., and Mura, U. (2006). Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase. Biochemistry45, 3226–3234.10.1021/bi052069vSearch in Google Scholar PubMed

Chaerkady, R. and Sharma, K.K. (2004). Characterization of a bradykinin-hydrolyzing protease from the bovine lens. Invest. Ophthalmol. Vis. Sci.45, 1214–1223.10.1167/iovs.03-0769Search in Google Scholar PubMed

Chao, W.S., Gu, Y.Q., Pautot, V., Bray, E.A., and Walling, L.L. (1999). Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol.120, 979–992.10.1104/pp.120.4.979Search in Google Scholar PubMed PubMed Central

Chao, W.S., Pautot, V., Holzer, F.M., and Walling, L.L. (2000). Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A. Planta210, 563–573.10.1007/s004250050045Search in Google Scholar PubMed

Charlier, D., Kholti, A., Huysveld, N., Gigot, D., Maes, D., Thia-Toong, T.-L., and Glansdorf, N. (2000). Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding aminopeptidase. J. Mol. Biol.302, 411–426.Search in Google Scholar

Chen, H., Wilkerson, C.G., Kuchar, J.A., Phinney, B.S., and Howe, G.A. (2005). Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc. Natl. Acad. Sci. USA102, 19237–19242.10.1073/pnas.0509026102Search in Google Scholar PubMed PubMed Central

Colloms, S.D. (2004). Leucyl aminopeptidase PepA. In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 905–908.10.1016/B978-0-12-079611-3.50277-9Search in Google Scholar

Dando, P.M. and Barrett, A.J. (2004). Aminopeptidase PS. In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woesner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 313–315.10.1016/B978-0-12-079611-3.50084-7Search in Google Scholar

Grembecka, J., Mucha, A., Cierpicki, T., and Kafarski, P. (2003). The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. J. Med. Chem.46, 2641–2655.Search in Google Scholar

Gu, Y.Q. and Walling, L.L. (2000). Specificity of the wound-induced leucine aminopeptidase (LAP-A) of tomato-activity on dipeptide and tripeptide substrates. Eur. J. Biochem.267, 1178–1187.10.1046/j.1432-1327.2000.01116.xSearch in Google Scholar PubMed

Gu, Y.Q. and Walling, L.L. (2002). Identification of residues critical for activity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. Eur. J. Biochem.269, 1630–1640.10.1046/j.1432-1327.2002.02795.xSearch in Google Scholar PubMed

Gu, Y.-Q., Holzer, F.M., and Walling, L.L. (1999). Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. Eur. J. Biochem.263, 726–735.10.1046/j.1432-1327.1999.00548.xSearch in Google Scholar PubMed

Hosaka, T., Brooks, C.C., Presman, E., Kim, S.K., Zhang, Z.D., Breen, M., Gross, D.N., Sztul, E., and Pilch, P.F. (2005). p115 interacts with the GLUT4 vesicle protein, IRAP, and plays a critical role in insulin-stimulated GLUT4 translocation. Mol. Biol. Cell16, 2882–2890.10.1091/mbc.e05-01-0072Search in Google Scholar PubMed PubMed Central

Ishizaki, T., Tosaka, A., Nara, T., Aoshima, N., Namekawa, S., Watanabe, K., Hamada, F., Omori, A., and Sakaguchi, K. (2002). Leucine aminopeptidase during meiotic development. Eur. J. Biochem.269, 826–832.10.1046/j.0014-2956.2001.02713.xSearch in Google Scholar PubMed

Kloetzel, P.M. and Ossendorp, F. (2004). Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr. Opin. Immunol.16, 76–81.10.1016/j.coi.2003.11.004Search in Google Scholar PubMed

Matarasso, N., Schuster, S., and Avni, A. (2005). A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression. Plant Cell17, 1205–1216.10.1105/tpc.105.030775Search in Google Scholar PubMed PubMed Central

Matsushima, M., Takahashi, T., Ichinose, M., Miki, K., Kurokawa, K., and Takahashi, K. (1991). Structural and immunological evidence for the identity of prolyl aminopeptidase with leucyl aminopeptidase. Biochem. Biophys. Res. Commun.178, 1459–1464.10.1016/0006-291X(91)91057-JSearch in Google Scholar

Moore, B. (2004). Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci.9, 221–228.10.1016/j.tplants.2004.03.005Search in Google Scholar

Muday, G.K. and Murphy, A.S. (2002). An emerging model of auxin transport regulation. Plant Cell14, 293–299.10.1105/tpc.140230Search in Google Scholar

Murphy, A.S., Hoogner, K.R., Peer, W.A., and Taiz, L. (2002). Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol.128, 935–950.10.1104/pp.010519Search in Google Scholar

Nomura, S., Tsujimoto, M., and Mizutani, S. (2004). Cystinyl aminopeptidase, oxytocinase and insulin-regulated aminopeptidase. In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 307–309.10.1016/B978-0-12-079611-3.50082-3Search in Google Scholar

Nomura, S., Ito, T., Yamamoto, E., Sumigama, S., Iwase, A., Okada, M., Shibata, K., Ando, H., Ino, K., Kikkawa, F., and Mizutani, S. (2005). Gene regulation and physiological function of placental leucine aminopeptidase/oxytocinase during pregnancy. Biochim. Biophys. Acta1751, 19–25.10.1016/j.bbapap.2005.04.006Search in Google Scholar

Paul, S. and Summers, D. (2004). ArgR and PepA, accessory proteins for XerCD-mediated resolution of ColE1 dimers, are also required for stable maintenance of the P1 prophage. Plasmid52, 63–68.10.1016/j.plasmid.2004.04.003Search in Google Scholar

Pechan, T., Cohen, A., Williams, W.P., and Luthe, D.S. (2002). Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. USA99, 13319–13323.10.1073/pnas.202224899Search in Google Scholar

Rawlings, N.D. and Barrett, A.J. (1995). Evolutionary families of metallopeptidases. Methods Enzymol.248, 183–228.10.1016/0076-6879(95)48015-3Search in Google Scholar

Rawlings, N.D. and Barrett, A.J. (2004). Introduction: Metallopeptidases and their clans. In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woesner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 231–263.10.1016/B978-0-12-079611-3.50075-6Search in Google Scholar

Rawlings, N.D., Morton, F.R., and Barrett, A.J. (2006). MEROPS: the peptidase database. Nucleic Acids Res.34, D270–D272.10.1093/nar/gkj089Search in Google Scholar

Reijns, M., Lu, Y.J., Leach, S., and Colloms, S.D. (2005). Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol. Microbiol.57, 927–941.10.1111/j.1365-2958.2005.04716.xSearch in Google Scholar

Ruiz-Rivero, O.J. and Prat, S. (1998). A -308 deletion of the tomato LAP promoters is able to direct flower-specific and MeJA-induced expression in transgenic plants. Plant Mol. Biol.36, 639–648.10.1023/A:1005980028203Search in Google Scholar

Ryan, C.A. (2000). The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta1477, 112–121.10.1016/S0167-4838(99)00269-1Search in Google Scholar

Sánchez-Morán, E., Jones, G.H., Franklin, F.C.H., and Santos, J.L. (2004). A puromycin-sensitive aminopeptidase is essential for meiosis in Arabidopsis thaliana. Plant Cell16, 2895–2909.10.1105/tpc.104.024992Search in Google Scholar PubMed PubMed Central

Schomburg, L. (2004). Aminopeptidase PILS. In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 311–212.10.1016/B978-0-12-079611-3.50083-5Search in Google Scholar

Stoltze, L., Schirle, M., Schwarz, G., Schroter, C., Thompson, M.W., Hersh, L.B., Kalbacher, H., Stevanovic, S., Rammensee, H.G., and Schild, H. (2000). Two new proteases in the MHC class I processing pathway. Nat. Immunol.1, 413–418.10.1038/80852Search in Google Scholar PubMed

Sträter, N. and Lipscomb, W.N. (2004). Leucyl aminopeptidase (animal). In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 896–899.10.1016/B978-0-12-079611-3.50275-5Search in Google Scholar

Sträter, N., Sun, L., Kantrowitz, E.R., and Lipscomb, W.N. (1999). A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase. Proc. Natl. Acad. Sci. USA96, 11151–11155.10.1073/pnas.96.20.11151Search in Google Scholar PubMed PubMed Central

Taylor, A. (1996). Aminopeptidases (Austin, TX, USA: R.G. Landes Co.).Search in Google Scholar

Towne, C.F., York, I.A., Neijssen, J., Karow, M.L., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Neefjes, J.J., and Rock, K.L. (2005). Leucine aminopeptidase is not essential for trimming peptides in the cytosol or generating epitopes for MHC class I antigen presentation. J. Immunol.175, 6605–6614.10.4049/jimmunol.175.10.6605Search in Google Scholar PubMed

Tsujimoto, M. and Hattori, A. (2005). The oxytocinase subfamily of M1 aminopeptidases. Biochim. Biophys. Acta1751, 9–18.10.1016/j.bbapap.2004.09.011Search in Google Scholar PubMed

Tu, C.-J., Park, S.-Y., and Walling, L.L. (2003). Isolation and characterization of the neutral leucine aminopeptidase (LapN) of tomato. Plant Physiol.132, 243–255.10.1104/pp.102.013854Search in Google Scholar PubMed PubMed Central

Turner, A.J. (2004). Membrane alanyl aminopeptidase. In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 289–292.10.1016/B978-0-12-079611-3.50077-XSearch in Google Scholar

Walling, L.L. (2004). Leucyl aminopeptidase (plant). In: Handbook of Proteolytic Enzymes, 2nd Edition, A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds. (San Diego, USA: Elsevier/Academic Press), pp. 901–904.10.1016/B978-0-12-079611-3.50276-7Search in Google Scholar

Walling, L.L. (2006). Recycling or regulation? The role of amino-terminal modifying enzymes. Curr. Opin. Plant Biol.9, 227–233.10.1016/j.pbi.2006.03.009Search in Google Scholar PubMed

Woolwine, S.C., Sprinkle, A.B., and Wozniak, D.J. (2001). Loss of Pseudomonas aeruginosa PhpA aminopeptidase activity results in increased algD transcription. J. Bacteriol.183, 4674–4679.10.1128/JB.183.15.4674-4679.2001Search in Google Scholar PubMed PubMed Central

Yang, L.T., Mickelson, S., See, D., Blake, T.K., and Fischer, A.M. (2004). Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization. J. Exp. Bot.55, 2607–2616.Search in Google Scholar

Published Online: 2006-11-28
Published in Print: 2006-12-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.191/html
Scroll to top button