Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 26, 2006

Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more

  • Katerina Oikonomopoulou , Kristina K. Hansen , Mahmoud Saifeddine , Nathalie Vergnolle , Illa Tea , Eleftherios P. Diamandis and Morley D. Hollenberg
From the journal Biological Chemistry

Abstract

Serine proteinases, like trypsin, can play a hormone-like role by triggering signal transduction pathways in target cells. In many respects these hormone-like actions of proteinases can now be understood in terms of the pharmacodynamics of the G protein-coupled ‘receptor’ responsible for the cellular actions of thrombin (proteinase-activated receptor-1, or PAR1). PAR1, like the other three members of this receptor family (PAR2, PAR3 and PAR4), has a unique mechanism of activation involving the proteolytic unmasking of an N-terminally tethered sequence that can activate the receptor. The selective activation of each PAR by short synthetic peptides representing these sequences has demonstrated that PAR1, PAR2 and PAR4 play important roles in regulating physiological responses ranging from vasoregulation and cell growth to inflammation and nociception. We hypothesise that the tissue kallikreins may regulate signal transduction via the PARs. Although PARs can account for many of their biological actions, kallikreins may also cause effects by mechanisms not involving the PARs. For instance, trypsin activates the insulin receptor and thrombin can act via a mechanism involving its non-catalytic domains. Based on the data we summarise, we propose that the kallikreins, like thrombin and trypsin, must now be considered as important ‘hormonal’ regulators of tissue function.

:

Corresponding author

References

Ahlquist, R.P. (1948). A study of the adrenotropic receptors. Am. J. Physiol.153, 586–600.10.1152/ajplegacy.1948.153.3.586Search in Google Scholar PubMed

al-Ani, B., Saifeddine., M., and Hollenberg, M.D. (1995). Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can. J. Physiol. Pharmacol.73, 1203–1207.10.1139/y95-172Search in Google Scholar PubMed

Asfaha, S., Brussee, V., Chapman, K., Zochodne, D.W., and Vergnolle, N. (2002). Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br. J. Pharmacol.135, 1101–1106.10.1038/sj.bjp.0704568Search in Google Scholar PubMed PubMed Central

Bar-Shavit, R., Kahn, A., Mudd, M.S., Wilner, G.D., Mann, K.G., and Fenton, J.W. II (1984). Localization of a chemotactic domain in human thrombin. Biochemistry23, 397–400.10.1021/bi00298a001Search in Google Scholar PubMed

Bar-Shavit, R., Kahn, A.J., Mann, K.G., and Wilner, G.D. (1986). Identification of a thrombin sequence with growth factor activity on macrophages. Proc. Natl. Acad. Sci. USA83, 976–980.10.1073/pnas.83.4.976Search in Google Scholar PubMed PubMed Central

Blaber, S.I., Scarisbrick, I.A., Bernett, M.J., Dhanarajan, P., Seavy, M.A., Jin, Y., Schwartz, M.A., Rodriguez, M., and Blaber, M. (2002). Enzymatic properties of rat myelencephalon-specific protease. Biochemistry41, 1165–1173.10.1021/bi015781aSearch in Google Scholar PubMed

Blaber, S.I., Ciric, B., Christophi, G.P., Bernett, M.J., Blaber, M., Rodriguez, M., and Scarisbrick, I.A. (2004). Targeting kallikrein 6 proteolysis attenuates CNS inflammatory disease. FASEB J.18, 920–922.10.1096/fj.03-1212fjeSearch in Google Scholar PubMed

Borgono, C.A. and Diamandis, E.P. (2004). The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer4, 876–890.10.1038/nrc1474Search in Google Scholar PubMed

Borgono, C.A., Grass, L., Soosaipillai, A., Yousef, G.M., Petraki, C.D., Howarth, D.H., Fracchioli, S., Katsaros, D., and Diamandis, E.P. (2003). Human kallikrein 14: a new potential biomarker for ovarian and breast cancer. Cancer Res.63, 9032–9041.Search in Google Scholar

Borgono, C.A., Michael, I.P., and Diamandis, E.P. (2004). Human tissue kallikreins: physiologic roles and applications in cancer. Mol. Cancer Res.2, 257–280.10.1158/1541-7786.257.2.5Search in Google Scholar

Boven, L.A., Vergnolle, N., Henry, S.D., Silva, C., Imai, Y., Holden, J., Warren, K., Hollenberg, M.D., and Power, C. (2003). Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J. Immunol.170, 2638–2646.10.4049/jimmunol.170.5.2638Search in Google Scholar PubMed

Cenac, N., Coelho, A.M., Nguyen, C., Compton, S., Andrade-Gordon, P., MacNaughton, W.K., Wallace, J.L., Hollenberg, M.D., Bunnett, N.W., Garcia-Villar, R., et al. (2002). Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am. J. Pathol.161, 1903–1915.10.1016/S0002-9440(10)64466-5Search in Google Scholar

Choong, P.F. and Nadesapillai, A.P. (2003). Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin. Orthop. Relat. Res.415, S46–58.10.1097/01.blo0000093845.72468.bdSearch in Google Scholar

Compton, S.J., McGuire, J.J., Saifeddine, M., and Hollenberg, M.D. (2002a). Restricted ability of human mast cell tryptase to activate proteinase-activated receptor-2 in rat aorta. Can. J. Physiol. Pharmacol.80, 987–992.10.1139/y02-125Search in Google Scholar

Compton, S.J., Sandhu, S., Wijesuriya, S.J., and Hollenberg, M.D. (2002b). Glycosylation of human proteinase-activated receptor-2 (hPAR2): role in cell surface expression and signalling. Biochem. J.368, 495–505.10.1042/bj20020706Search in Google Scholar

Corvera, C.U., Dery, O., McConalogue, K., Gamp, P., Thoma, M., al-Ani, B., Caughey, G.H., Hollenberg, M.D., and Bunnett, N.W. (1999). Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol.517, 741–756.10.1111/j.1469-7793.1999.0741s.xSearch in Google Scholar

Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature407, 258–264.10.1038/35025229Search in Google Scholar

Cuatrecasas, P. (1971). Perturbation of the insulin receptor of isolated fat cells with proteolytic enzymes. J. Biol. Chem.246, 6522–6531.10.1016/S0021-9258(19)34145-6Search in Google Scholar

de Garavilla, L., Vergnolle, N., Young, S.H., Ennes, H., Steinhoff, M., Ossovskaya, V.S., D'Andrea, M.R., Mayer, E.A., Wallace, J.L., Hollenberg, M.D., et al. (2001). Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br. J. Pharmacol.133, 975–987.10.1038/sj.bjp.0704152Search in Google Scholar

Diamandis, E.P., Yousef, G.M., Soosaipillai, A.R., and Bunting, P. (2000). Human kallikrein 6 (zyme/protease M/neurosin): a new serum biomarker of ovarian carcinoma. Clin. Biochem.33, 579–583.10.1016/S0009-9120(00)00182-XSearch in Google Scholar

Ferrell, W.R., Lockhart, J.C., Kelso, E.B., Dunning, L., Plevin, R., Meek, S.E., Smith, A.J., Hunter, G.D., McLean, J.S., McGarry, F., et al. (2003). Essential role for proteinase-activated receptor-2 in arthritis. J. Clin. Invest.111, 35–41.10.1172/JCI16913Search in Google Scholar PubMed PubMed Central

Frenette, G., Tremblay, R.R., Lazure, C., and Dube, J.Y. (1997). Prostatic kallikrein hK2, but not prostate-specific antigen (hK3), activates single-chain urokinase-type plasminogen activator. Int. J. Cancer71, 897–899.10.1002/(SICI)1097-0215(19970529)71:5<897::AID-IJC31>3.0.CO;2-2Search in Google Scholar

Glenn, K.C., Frost, G.H., Bergmann, J.S., and Carney, D.H. (1988). Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept. Res.1, 65–73.Search in Google Scholar

Hollenberg, M.D. and Compton, S.J. (2002). International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol. Rev.54, 203–217.Search in Google Scholar

Hollenberg, M.D. and Houle, S. (2005). Proteinases as hormone-like signal messengers. Swiss Med. Wkly.135, 425–432.10.4414/smw.2005.11037Search in Google Scholar

Hollenberg, M.D. and Saifeddine, M. (2001). Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Can. J. Physiol. Pharmacol.79, 439–442.10.1139/y01-013Search in Google Scholar

Hollenberg, M.D., Laniyonu, A.A., Saifeddine, M., and Moore, G.J. (1993). Role of the amino- and carboxyl-terminal domains of thrombin receptor-derived polypeptides in biological activity in vascular endothelium and gastric smooth muscle: evidence for receptor subtypes. Mol. Pharmacol.43, 921–930.Search in Google Scholar

Hollenberg, M.D., Saifeddine, M., and al-Ani, B. (1996). Proteinase-activated receptor-2 in rat aorta: structural requirements for agonist activity of receptor-activating peptides. Mol. Pharmacol.49, 229–233.Search in Google Scholar

Hollenberg, M.D., Saifeddine, M., al-Ani, B., and Kawabata, A. (1997). Proteinase-activated receptors: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Can. J. Physiol. Pharmacol.75, 832–841.10.1139/y97-110Search in Google Scholar

Hollenberg, M.D., Saifeddine, M., Sandhu, S., Houle, S., and Vergnolle, N. (2004). Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br. J. Pharmacol.143, 443–454.10.1038/sj.bjp.0705946Search in Google Scholar

Kawabata, A., Saifeddine, M., Al-Ani, B., Leblond, L., and Hollenberg, M.D. (1999). Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: activation of PAR2 by PAR1-targeted ligands. J. Pharmacol. Exp. Ther.288, 358–370.Search in Google Scholar

Kim, H., Scorilas, A., Katsaros, D., Yousef, G.M., Massobrio, M., Fracchioli, S., Piccinno, R., Gordini, G., and Diamandis, E.P. (2001). Human kallikrein gene 5 (KLK5) expression is an indicator of poor prognosis in ovarian cancer. Br. J. Cancer84, 643–650.10.1054/bjoc.2000.1649Search in Google Scholar

Kinlough-Rathbone, R.L., Rand, M.L., and Packham, M.A. (1993). Rabbit and rat platelets do not respond to thrombin receptor peptides that activate human platelets. Blood82, 103–106.10.1182/blood.V82.1.103.bloodjournal821103Search in Google Scholar

Kong, W., McConalogue, K., Khitin, L.M., Hollenberg, M.D., Payan, D.G., Bohm, S.K., and Bunnett, N.W. (1997). Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. USA94, 8884–8889.10.1073/pnas.94.16.8884Search in Google Scholar

Kono, T. and Barham, F.W. (1971). Insulin-like effects of trypsin on fat cells. Localization of the metabolic steps and the cellular site affected by the enzyme. J. Biol. Chem.246, 6204–6209.10.1016/S0021-9258(18)61776-4Search in Google Scholar

Lafleur, M.A., Hollenberg, M.D., Atkinson, S.J., Knauper, V., Murphy, G., and Edwards, D.R. (2001). Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem. J.357, 107–115.10.1042/bj3570107Search in Google Scholar

Macfarlane, S.R., Seatter, M.J., Kanke, T., Hunter, G.D., and Plevin, R. (2001). Proteinase-activated receptors. Pharmacol. Rev.53, 245–282.Search in Google Scholar

Mirza, H., Schmidt, V.A., Derian, C.K., Jesty, J., and Bahou, W.F. (1997). Mitogenic responses mediated through the proteinase-activated receptor-2 are induced by expressed forms of mast cell α- or β-tryptases. Blood90, 3914–3922.10.1182/blood.V90.10.3914Search in Google Scholar

Molino, M., Barnathan, E.S., Numerof, R., Clark, J., Dreyer, M., Cumashi, A., Hoxie, J.A., Schechter, N., Woolkalis, M., and Brass, L.F. (1997). Interactions of mast cell tryptase with thrombin receptors and PAR-2. J. Biol. Chem.272, 4043–4049.10.1074/jbc.272.7.4043Search in Google Scholar

Nguyen, C., Coelho, A.M., Grady, E., Compton, S.J., Wallace, J.L., Hollenberg, M.D., Cenac, N., Garcia-Villar, R., Bueno, L., Steinhoff, M., et al. (2003). Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Can. J. Physiol. Pharmacol.81, 920–927.10.1139/y03-080Search in Google Scholar

Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Ding, C.K., Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik, Y.A., et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature376, 37–43.10.1038/376037a0Search in Google Scholar

Noorbakhsh, F., Vergnolle, N., Hollenberg, M.D., and Power, C. (2003). Proteinase-activated receptors in the nervous system. Nat. Rev. Neurosci.4, 981–990.10.1038/nrn1255Search in Google Scholar

Noorbakhsh, F., Vergnolle, N., McArthur, J.C., Silva, C., Vodjgani, M., Andrade-Gordon, P., Hollenberg, M.D., and Power, C. (2005). Proteinase-activated receptor-2 induction by neuroinflammation prevents neuronal death during HIV infection. J. Immunol.174, 7320–7329.10.4049/jimmunol.174.11.7320Search in Google Scholar

Noorbakhsh, F., Tsutsui, S., Vergnolle, N., Boven, L.A., Shariat, N., Vodjgani, M., Warren, K.G., Andrade-Gordon, P., Hollenberg, M.D., and Power, C. (2006). Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med.20, 203, 425–435.10.1084/jem.20052148Search in Google Scholar

Nystedt, S., Emilsson, K., Wahlestedt, C., and Sundelin, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA91, 9208–9212.10.1073/pnas.91.20.9208Search in Google Scholar

Oikonomopoulou, K., Hansen, K.K., Saifeddine, M., Vergnolle, N., Tea, I., Blaber, M., Blaber, S.I., Scarisbrick, I., Diamandis, E.P., and Hollenberg, M.D. (2006). Kallikrein-mediated cell signaling: targeting proteinase-activated receptors (PARs). Biol. Chem.387, 817–824.Search in Google Scholar

Ossovskaya, V.S. and Bunnett, N.W. (2004). Protease-activated receptors: contribution to physiology and disease. Physiol. Rev.84, 579–621.10.1152/physrev.00028.2003Search in Google Scholar

Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., and Ullrich, A. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature402, 884–888.10.1038/47260Search in Google Scholar

Rasmussen, U.B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pages, G., Pavirani, A., Lecocq, J.P., Pouyssegur, J., and Van Obberghen-Schilling, E. (1991). cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett.288, 123–128.10.1016/0014-5793(91)81017-3Search in Google Scholar

Rieser, P. (1967). The insulin-like action of pepsin and pepsinogen. Acta Endocrinol. (Copenh.)54, 375–379.10.1530/acta.0.0540375Search in Google Scholar PubMed

Rieser, P. and Rieser, C.H. (1964). Anabolic responses of diaphragm muscle to insulin and to other pancreatic proteins. Proc. Soc. Exp. Biol. Med.116, 669–671.10.3181/00379727-116-29339Search in Google Scholar PubMed

Ruf, W., Dorfleutner, A., and Riewald, M. (2003). Specificity of coagulation factor signaling. J. Thromb. Haemost.1, 1495–1503.10.1046/j.1538-7836.2003.00300.xSearch in Google Scholar PubMed

Saifeddine, M., al-Ani, B., Cheng, C.H., Wang, L., and Hollenberg, M.D. (1996). Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br. J. Pharmacol.118, 521–530.10.1111/j.1476-5381.1996.tb15433.xSearch in Google Scholar PubMed PubMed Central

Scarisbrick, I.A., Blaber, S.I., Lucchinetti, C.F., Genain, C.P., Blaber, M., and Rodriguez, M. (2002). Activity of a newly identified serine protease in CNS demyelination. Brain125, 1283–1296.10.1093/brain/awf142Search in Google Scholar PubMed

Shoelson, S.E., White, M.F., and Kahn, C.R. (1988). Tryptic activation of the insulin receptor. Proteolytic truncation of the α-subunit releases the β-subunit from inhibitory control. J. Biol. Chem.263, 4852–4860.Search in Google Scholar

Steinhoff, M., Vergnolle, N., Young, S.H., Tognetto, M., Amadesi, S., Ennes, H.S., Trevisani, M., Hollenberg, M.D., Wallace, J.L., Caughey, G.H., et al. (2000). Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat. Med.6, 151–158.10.1038/72247Search in Google Scholar PubMed

Steinhoff, M., Buddenkotte, J., Shpacovitch, V., Rattenholl, A., Moormann, C., Vergnolle, N., Luger, T.A., and Hollenberg, M.D. (2005). Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr. Rev.26, 1–43.10.1210/er.2003-0025Search in Google Scholar PubMed

Takayama, T.K., McMullen, B.A., Nelson, P.S., Matsumura, M., and Fujikawa, K. (2001). Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry40, 15341–15348.10.1021/bi015775eSearch in Google Scholar PubMed

Tanimoto, H., Underwood, L.J., Shigemasa, K., Parmley, T.H., and O'Brien, T.J. (2001). Increased expression of protease M in ovarian tumors. Tumour Biol.22, 11–18.10.1159/000030150Search in Google Scholar PubMed

Vergnolle, N. (2004). Modulation of visceral pain and inflammation by protease-activated receptors. Br. J. Pharmacol.141, 1264–1274.10.1038/sj.bjp.0705750Search in Google Scholar PubMed PubMed Central

Vergnolle, N., Hollenberg, M.D., and Wallace, J.L. (1999a). Pro- and anti-inflammatory actions of thrombin: a distinct role for proteinase-activated receptor-1 (PAR1). Br. J. Pharmacol.126, 1262–1268.10.1038/sj.bjp.0702408Search in Google Scholar

Vergnolle, N., Hollenberg, M.D., Sharkey, K.A., and Wallace, J.L. (1999b). Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br. J. Pharmacol.127, 1083–1090.10.1038/sj.bjp.0702634Search in Google Scholar

Vergnolle, N., Bunnett, N.W., Sharkey, K.A., Brussee, V., Compton, S.J., Grady, E.F., Cirino, G., Gerard, N., Basbaum, A.I., Andrade-Gordon, P., Hollenberg, M.D., and Wallace, J.L. (2001a). Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat. Med.7, 821–826.10.1038/89945Search in Google Scholar

Vergnolle, N., Wallace, J.L., Bunnett, N.W., and Hollenberg, M.D. (2001b). Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol. Sci.22, 146–152.10.1016/S0165-6147(00)01634-5Search in Google Scholar

Vu, T.K., Hung, D.T., Wheaton, V.I., and Coughlin, S.R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell64, 1057–1068.10.1016/0092-8674(91)90261-VSearch in Google Scholar

Yousef, G.M., Polymeris, M.E., Grass, L., Soosaipillai, A., Chan, P.C., Scorilas, A., Borgono, C., Harbeck, N., Schmalfeldt, B., Dorn, J., et al. (2003). Human kallikrein 5: a potential novel serum biomarker for breast and ovarian cancer. Cancer Res.63, 3958–3965.Search in Google Scholar

Published Online: 2006-06-26
Published in Print: 2006-06-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.086/html
Scroll to top button