Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2005

Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA

  • Tim Hofer , Carine Badouard , Edyta Bajak , Jean-Luc Ravanat , Åse Mattsson and Ian A. Cotgreave
From the journal Biological Chemistry

Abstract

Human A549 lung epithelial cells were challenged with 18O-labeled hydrogen peroxide ([18O]-H2O2), the total RNA and DNA extracted in parallel, and analyzed for 18O-labeled 8-oxo-7,8-dihydroguanosine ([18O]-8-oxoGuo) and 8-oxo-7,8-dihydro-2′-deoxyguanosine ([18O]-8-oxodGuo) respectively, using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-MS/MS). [18O]-H2O2 exposure resulted in dose-response formation of both [18O]-8-oxoGuo and [18O]-8-oxodGuo and 18O-labeling of guanine in RNA was 14–25 times more common than in DNA. Kinetics of formation and subsequent removal of oxidized nucleic acids adducts were also monitored up to 24 h. The A549 showed slow turnover rates of adducts in RNA and DNA giving half-lives of approximately 12.5 h for [18O]-8-oxoGuo in RNA and 20.7 h for [18O]-8-oxodGuo in DNA, respectively.

:

Present address: Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA.; Corresponding author

References

Aas, P.A., Otterlei, M., Falnes, P.Ø., Vågbø, C.B., Skorpen, F., Akbari, M., Sundheim, O., Bjørås, M., Slupphaug, G., Seeberg, E., and Krokan, H.E. (2003). Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature421, 859–863.10.1038/nature01363Search in Google Scholar

Bray, W.C. and Gorin, M.H. (1932). Ferryl ion, a compound of tetravalent iron. J. Am. Chem. Soc.54, 2124–2125.10.1021/ja01344a505Search in Google Scholar

Culp, S.J., Cho, B.P., Kadlubar, F.F., and Evans, F.E. (1989). Structural and conformational analyses of 8-hydroxy-2′-deoxyguanosine. Chem. Res. Toxicol.2, 416–422.10.1021/tx00012a010Search in Google Scholar

Dandrea, T., Hellmold, H., Jonsson, C., Zhivotovsky, B., Hofer, T., Wärngard, L., and Cotgreave, I. (2004). The transcriptosomal response of human A549 lung cells to a hydrogen peroxide-generating system: relationship to DNA damage, cell cycle arrest, and caspase activation. Free Radic. Biol. Med.36, 881–896.10.1016/j.freeradbiomed.2003.12.014Search in Google Scholar

Dani, S.U. (1997). Molecular turnover and aging. In: Principles of Neural Aging, S.U. Dani, A. Hori, and G.F. Walter, eds. (Amsterdam, The Netherlands: Elsevier).Search in Google Scholar

De Zwart, L.L., Meerman, J.H.N., Commandeur, J.N.M., and Vermeulen, N.P.E. (1999). Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic. Biol. Med.26, 202–226.10.1016/S0891-5849(98)00196-8Search in Google Scholar

Downes, A. and Blunt, T.P. (1879). The effect of sunlight upon hydrogen peroxide. Nature20, 521.Search in Google Scholar

Fenton, H.J.H. (1876). On a new reaction of tartaric acid. Chem. News33, 190.Search in Google Scholar

Fenton, H.J.H. (1894). Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans.65, 899–910.10.1039/CT8946500899Search in Google Scholar

Fiala, E.S., Conaway, C.C., and Mathis, J.E. (1989). Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res.49, 5518–5522.Search in Google Scholar

Finkel, T. and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature408, 239–247.10.1038/35041687Search in Google Scholar PubMed

Frelon, S., Douki, T., Ravanat, J.-L., Pouget, J.-P., Tornabene, C., and Cadet, J. (2000). High-performance liquid chromatography-tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol.13, 1002–1010.10.1021/tx000085hSearch in Google Scholar PubMed

Haber, F. and Weiss, J. (1932). Über die Katalyse des Hydroperoxydes. Naturwissenschaften20, 948–950.10.1007/BF01504715Search in Google Scholar

Halliwell, B. and Gutteridge, J.M.C. (1999). Free Radicals in Biology and Medicine, 3rd Edition (Oxford, UK: Oxford University Press).Search in Google Scholar

Hayakawa, H., Uchiumi, T., Fukada, T., Ashizuka, M., Kohno, K., Kuwano, M., and Sekiguchi, M. (2002). Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine. Biochemistry41, 12739–12744.10.1021/bi0201872Search in Google Scholar PubMed

Helbock, H.J., Beckman, K.B., Shigenaga, M.K., Walter, P.B., Woodall, A.A., Yeo, H.C., and Ames, B.N. (1998). DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc. Natl. Acad. Sci. USA95, 288–293.10.1073/pnas.95.1.288Search in Google Scholar

Hofer, T. (2001). Oxidation of 2′-deoxyguanosine by H2O2-ascorbate: evidence against free OH and thermodynamic support for two-electron reduction of H2O2. J. Chem. Soc. Perkin Trans.2, 210–213.10.1039/b006394kSearch in Google Scholar

Hofer, T. and Möller, L. (2002). Optimization of the workup procedure for the analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine with electrochemical detection. Chem. Res. Toxicol.15, 426–432.10.1021/tx015573jSearch in Google Scholar

Jaruga, P. and Dizdaroglu, M. (1996). Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res.24, 1389–1394.10.1093/nar/24.8.1389Search in Google Scholar

Kasai, H. (1997). Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res.387, 147–163.10.1016/S1383-5742(97)00035-5Search in Google Scholar

Klein, J.C., Bleeker, M.J., Saris, C.P., Roelen, H.C.P.F., Brugghe, H.F., van den Elst, H., van der Marel, G.A., van Boom, J.H., Westra, J.G., Kriek, E., and Berns, A.J.M. (1992). Repair and replication of plasmids with site-specific 8-oxodG and 8-AAFdG residues in normal and repair-deficient human cells. Nucleic Acids Res.20, 4437–4443.10.1093/nar/20.17.4437Search in Google Scholar

Manchot, W. and Wilhelms, O. (1902). Ueber Peroxydbildung beim Eisen. Justus Liebig's Ann. Chem.325, 105–124.Search in Google Scholar

Maquat, L.E. and Carmichael, G.G. (2001). Quality control of mRNA function. Cell104, 173–176.10.1016/S0092-8674(01)00202-1Search in Google Scholar

Martinez, G.R., Ravanat, J.-L., Medeiros, M.H.G., Cadet, J., and Di Mascio, P. (2000). Synthesis of a naphthalene endoperoxide as a source of 18O-labeled singlet oxygen for mechanistic studies. J. Am. Chem. Soc.122, 10212–10213.10.1021/ja0016452Search in Google Scholar

Mattick, J.S. (2004). The hidden genetic program of complex organisms. Sci. Am.291, 60–67.10.1038/scientificamerican1004-60Search in Google Scholar PubMed

Metzler, D.E. (1977). Biochemistry: The Chemical Reactions of Living Cells, 1st Edition. (New York, USA: Academic Press).Search in Google Scholar

Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T., Shimohama, S., et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol.60, 759–767.10.1093/jnen/60.8.759Search in Google Scholar PubMed

Osterod, M., Hollenbach, S., Hengstler, J.G., Barnes, D.E., Lindahl, T., and Epe, B. (2001). Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1)-deficient mice. Carcinogenesis22, 1459–1463.10.1093/carcin/22.9.1459Search in Google Scholar

Park, E.-M., Shigenaga, M.K., Degan, P., Korn, T.S., Kitzler, J.W., Wehr, C.M., Kolachana, P., and Ames, B.N. (1992). Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc. Natl. Acad. Sci. USA89, 3375–3379.10.1073/pnas.89.8.3375Search in Google Scholar

Ravanat, J.-L., Duretz, B., Guiller, A., Douki, T., and Cadet, J. (1998). Isotope dilution high-performance liquid chromatography-electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. J. Chromatogr. B715, 349–356.10.1016/S0378-4347(98)00259-XSearch in Google Scholar

Ravanat, J.-L., Di Mascio, P., Martinez, G.R., Medeiros, M.H.G., and Cadet, J. (2000). Singlet oxygen induces oxidation of cellular DNA. J. Biol. Chem.275, 40601–40604.10.1074/jbc.M006681200Search in Google Scholar

Ravanat, J.-L., Douki, T., Duez, P., Gremaud, E., Herbert, K., Hofer, T., Lasserre, L., Saint-Pierre, C., Favier, A., and Cadet, J. (2002). Cellular background level of 8-oxo-7,8-dihydro-2′-deoxyguanosine: an isotope-based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis23, 1911–1918.10.1093/carcin/23.11.1911Search in Google Scholar

Schönbein, C.F. (1860). Fortsetzung der Beiträge zur nähern Kenntniss des Sauerstoffs. J. Prakt. Chem.79, 65–72.10.1002/prac.18600790111Search in Google Scholar

Steenken, S. and Jovanovic, S.V. (1997). How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc.119, 617–618.10.1021/ja962255bSearch in Google Scholar

Thénard, M.L.J. (1818). Observations sur des nouvelles combinations entre l'oxigéne et divers acides. Ann. Chim. Phys.8, 306–313.Search in Google Scholar

Wamer, W.G. and Wei, R.R. (1997). In vitro photooxidation of nucleic acids by ultraviolet A radiation. Photochem. Photobiol.65, 560–563.Search in Google Scholar

Wardman, P. and Candeias, L.P. (1996). Fenton chemistry: an introduction. Radiat. Res.145, 523–531.10.2307/3579270Search in Google Scholar

Weimann, A., Belling, D., and Poulsen, H.E. (2002). Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res.30, E7.10.1093/nar/30.2.e7Search in Google Scholar

Zhang, J., Perry, G., Smith, M.A., Robertson, D., Olson, S.J., Graham, D.G., and Montine, T.J. (1999). Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol.154, 1423–1429.10.1016/S0002-9440(10)65396-5Search in Google Scholar

Published Online: 2005-07-05
Published in Print: 2005-04-01

© by Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.040/html
Scroll to top button