Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2005

On the mechanism of alkylphosphocholine (APC)-induced apoptosis in tumour cells

  • Carolin Oberle , Ulrich Massing and Harald F. Krug
From the journal Biological Chemistry

Abstract

Alkylphosphocholines (APCs) represent a new and very encouraging class of antitumour agents that have also been shown to induce apoptosis in tumour cells, but their exact mode of action has still not been elucidated. The APC compound presented here, S-1-O-phosphocholine-2-N-acetyl-octadecane (S-NC-2) induces apoptosis in a variety of cancer cells. To define the molecular requirements for S-NC-2-induced apoptosis, activation of caspase-8 and -3 and the cleavage of death substrates, such as poly(ADP-ribose) polymerase (PARP), were investigated in Jurkat, BJAB, SKW6.4 and K562 cells. The signalling pathway seems to be initiated at the death receptor level. Cells that are defective in Fas-receptor signalling (e.g., FADDdn BJAB), as well as cells lacking the Fas receptor (K562), were resistant to S-NC-2 treatment. Furthermore, the treatment of Jurkat cells with S-NC-2 resulted in the clustering of death receptor molecules and co-localisation of the Fas receptor with caveolin, a marker for lipid rafts. In addition, the involvement of mitochondria was detected, since S-NC-2 induces the breakdown of the mitochondrial membrane potential. Overexpression of the anti-apoptotic protein Bcl-2 prevented the loss of ΔΨm in type II (Jurkat) but not in type I cells (SKW6.4). Moreover, cleavage of Bid was found, which points to a possible linkage between the receptor-dependent and the mitochondrial pathways.

:

Corresponding author

References

Abedinpour, P. and Jergil, B. (2003). Isolation of a caveolae-enriched fraction from rat lung by affinity partitioning and sucrose gradient centrifugation. Anal. Biochem.313, 1–8.10.1016/S0003-2697(02)00561-4Search in Google Scholar

Andreesen, R., Modolell, M., Oepke, G.H., Common, H., Lohr, G.W., and Munder, P.G. (1982). Studies on various parameters influencing leukemic cell destruction by alkyl-lysophospholipids. Anticancer Res.2, 95–100.Search in Google Scholar

Ashkenazi, A. and Dixit, V.M. (1998). Death receptors: signaling and modulation. Science281, 1305–1308.10.1126/science.281.5381.1305Search in Google Scholar

Ashkenazi, A. and Dixit, V.M. (1999). Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol.11, 255–260.10.1016/S0955-0674(99)80034-9Search in Google Scholar

Cifone, M.G., Roncaioli, P., De Maria, R., Camarda, G., Santoni, A., Ruberti, G., and Testi, R. (1995). Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J.14, 5859–5868.10.1002/j.1460-2075.1995.tb00274.xSearch in Google Scholar

Clive, S., Gardiner, J., and Leonard, R.C. (1999). Miltefosine as a topical treatment for cutaneous metastases in breast carcinoma. Cancer Chemother. Pharmacol.44 (Suppl.), S29–S30.10.1007/s002800051114Search in Google Scholar

Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001). Ceramide enables fas to cap and kill. J. Biol. Chem.276, 23954–23961.10.1074/jbc.M101866200Search in Google Scholar

Eibl, H. and Unger, C. (1990). Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat. Rev.17, 233–242.10.1016/0305-7372(90)90053-ISearch in Google Scholar

Ferri, K.F. and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat. Cell Biol.3, E255–E263.10.1038/ncb1101-e255Search in Google Scholar PubMed

Gajate, C. and Mollinedo, F. (2001). The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood98, 3860–3863.10.1182/blood.V98.13.3860Search in Google Scholar PubMed

Gajate, C. and Mollinedo, F. (2002). Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH(3) (edelfosine), a proapoptotic agent in tumor cells. Curr. Drug Metab.3, 491–525.10.2174/1389200023337225Search in Google Scholar PubMed

Gajate, C., Fonteriz, R.I., Cabaner, C., Alvarez-Noves, G., Alvarez-Rodriguez, Y., Modolell, M., and Mollinedo, F. (2000a). Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int. J. Cancer85, 674–682.10.1002/(SICI)1097-0215(20000301)85:5<674::AID-IJC13>3.0.CO;2-ZSearch in Google Scholar

Gajate, C., Santos-Beneit, A.M., Macho, A., Lazaro, M., Hernandez-De Rojas, A., Modolell, M., Munoz, E., and Mollinedo, F. (2000b). Involvement of mitochondria and caspase-3 in ET-18-OCH(3)-induced apoptosis of human leukemic cells. Int. J. Cancer86, 208–218.10.1002/(SICI)1097-0215(20000415)86:2<208::AID-IJC10>3.0.CO;2-ESearch in Google Scholar

Garcia, A., Cayla, X., Fleischer, A., Guergnon, J., Alvarez-Franco, C.F., Rebollo, M.P., Roncal, F., and Rebollo, A. (2003). Rafts: a simple way to control apoptosis by subcellular redistribution. Biochimie85, 727–731.10.1016/j.biochi.2003.09.005Search in Google Scholar

Gniadecki, R. (2004). Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem. Biophys. Res. Commun.320, 165–169.10.1016/j.bbrc.2004.05.145Search in Google Scholar

Grassme, H., Schwarz, H., and Gulbins, E. (2001). Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem. Biophys. Res. Commun.284, 1016–1030.10.1006/bbrc.2001.5045Search in Google Scholar

Grassme, H., Cremesti, A., Kolesnick, R., and Gulbins, E. (2003). Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene22, 5457–5470.10.1038/sj.onc.1206540Search in Google Scholar

Gross, A., Yin, X.M., Wang, K., Wei, M.C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S.J. (1999). Caspase cleaved BID, targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem.274, 1156–1163.10.1074/jbc.274.2.1156Search in Google Scholar

Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature407, 770–776.10.1038/35037710Search in Google Scholar

Hilgard, P., Stekar, J., Voegeli, R., Engel, J., Schumacher, W., Eibl, H., Unger, C., and Berger, M.R. (1988). Characterization of the antitumor activity of hexadecylphosphocholine (D 18506). Eur. J. Cancer Clin. Oncol.24, 1457–1461.10.1016/0277-5379(88)90336-7Search in Google Scholar

Jendrossek, V. and Handrick, R. (2003). Membrane-targeted anticancer drugs: potent inducers of apoptosis and putative radiosensitisers. Curr. Med. Chem. Anticancer Agents3, 343–353.10.2174/1568011033482341Search in Google Scholar

Jendrossek, V., Kugler, W., Erdlenbruch, B., Eibl, H., Lang, F., and Lakomek, M. (2001). Erucylphosphocholine-induced apoptosis in chemoresistant glioblastoma cell lines: involvement of caspase activation and mitochondrial alterations. Anticancer Res.21, 3389–3396.Search in Google Scholar

Jendrossek, V., Muller, I., Eibl, H., and Belka, C. (2003). Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene22, 2621–2631.10.1038/sj.onc.1206355Search in Google Scholar

Juo, P., Woo, M.S., Kuo, C.J., Signorelli, P., Biemann, H.P., Hannun, Y.A., and Blenis, J. (1999). FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ.10, 797–804.Search in Google Scholar

Kamp, D.W., Panduri, V., Weitzman, S.A., and Chandel, N. (2002). Asbestos-induced alveolar epithelial cell apoptosis: role of mitochondrial dysfunction caused by iron-derived free radicals. Mol. Cell Biochem.234–235, 153–160.10.1023/A:1015949118495Search in Google Scholar

Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., and Peter, M.E. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J.14, 5579–5588.10.1002/j.1460-2075.1995.tb00245.xSearch in Google Scholar

Koenigsmann, M.P., Notter, M., Knauf, W.U., Papadimitriou, C.A., Oberberg, D., Reufi, B., Mucke, C., Thiel, E., and Berdel, W.E. (1996). Chemopurging of peripheral blood-derived progenitor cells by alkyl-lysophospholipid and its effect on haematopoietic rescue after high-dose therapy. Bone Marrow Transplant.18, 549–557.Search in Google Scholar

Kotting, J., Marschner, N.W., Neumuller, W., Unger, C., and Eibl, H. (1992). Hexadecylphosphocholine and octadecyl-methyl-glycero-3-phosphocholine: a comparison of hemolytic activity, serum binding and tissue distribution. Prog. Exp. Tumor Res.34, 131–142.10.1159/000420838Search in Google Scholar

Krammer, P.H. (2000). CD95's deadly mission in the immune system. Nature407, 789–795.10.1038/35037728Search in Google Scholar

Krug, H.F., Oberle, C., Matzke, A., and Massing, U. (2003). The antiproliferative alkylphospholipid S-1-O-phosphocholine-2-N-acetyl-octadecane (S-NC-2) induces apoptosis in leukemia cell lines. Ann. NY Acad. Sci.1010, 335–338.10.1196/annals.1299.060Search in Google Scholar

Lavrik, I., Krueger, A., Schmitz, I., Baumann, S., Weyd, H., Krammer, P.H., and Kirchhoff, S. (2003). The active caspase-8 heterotetramer is formed at the CD95 DISC. Cell Death Differ.10, 144–145.10.1038/sj.cdd.4401156Search in Google Scholar

Lutter, M., Perkins, G.A., and Wang, X. (2001). The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC Cell Biol.2, 22.10.1186/1471-2121-2-22Search in Google Scholar

Massing, U. and Eibl, H. (1994). Synthesis of enantiomerically pure 1-O-phosphocholine-2-O-acyl-octadecane and 1-O-phosphocholine-2-N-acyl-octadecane. Chem. Phys. Lipids69, 105–120.10.1016/0009-3084(94)90032-9Search in Google Scholar

Matzke, A., Massing, U., and Krug, H.F. (2001). Killing tumour cells by alkylphosphocholines: evidence for involvement of CD95. Eur. J. Cell Biol.80, 1–10.10.1078/0171-9335-00130Search in Google Scholar PubMed

McGill, G. and Fisher, D.E. (1997). Apoptosis in tumorigenesis and cancer therapy. Front. Biosci.2, 353–379.Search in Google Scholar

Mollinedo, F., Fernandez-Luna, J.L., Gajate, C., Martin-Martin, B., Benito, A., Martinez-Dalmau, R., and Modolell, M. (1997). Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res.57, 1320–1328.Search in Google Scholar

Nagata, S. (1997). Apoptosis by death factor. Cell88, 355–365.10.1016/S0092-8674(00)81874-7Search in Google Scholar

Oberle, C., Massing, U., and Krug, H.F. (2003). S-1-O-Phosphocholine-2-N-acetyl-octadecane induces apoptosis in T-cells: involvement of receptor activation and the intrinsic apoptotic pathway. Signal Transduction5/6, 218–231.10.1002/sita.200300024Search in Google Scholar

Peter, M.E. and Krammer, P.H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ.10, 26–35.10.1038/sj.cdd.4401186Search in Google Scholar

Quest, A.F., Leyton, L., and Parraga, M. (2004). Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease. Biochem. Cell Biol.82, 129–144.10.1139/o03-071Search in Google Scholar

Ruiter, G.A., Zerp, S.F., Bartelink, H., van Blitterswijk, W.J., and Verheij, M. (1999). Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res.59, 2457–2463.10.1016/S0959-8049(99)81109-5Search in Google Scholar

Ruiter, G.A., Verheij, M., Zerp, S.F., and van Blitterswijk, W.J. (2001). Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int. J. Radiat. Oncol. Biol. Phys.49, 415–419.10.1016/S0360-3016(00)01476-0Search in Google Scholar

Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Krammer, P.H., and Peter, M.E. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J.17, 1675–1687.10.1093/emboj/17.6.1675Search in Google Scholar PubMed PubMed Central

Scaffidi, C., Schmitz, I., Zha, J., Korsmeyer, S.J., Krammer, P.H., and Peter, M.E. (1999). Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem.274, 22532–22538.10.1074/jbc.274.32.22532Search in Google Scholar PubMed

Scheel-Toellner, D., Wang, K., Assi, L.K., Webb, P.R., Craddock, R.M., Salmon, M., and Lord, J.M. (2004). Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem. Soc. Trans.32, 679–681.10.1042/BST0320679Search in Google Scholar PubMed

Siegel, R.M., Chan, F.K., Chun, H.J., and Lenardo, M.J. (2000). The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat. Immunol.1, 469–474.10.1038/82712Search in Google Scholar PubMed

Thornberry, N.A. and Lazebnik, Y. (1998). Caspases: enemies within. Science281, 1312–1316.10.1126/science.281.5381.1312Search in Google Scholar

Unger, C., Eibl, H., Breiser, A., von Heyden, H.W., Engel, J., Hilgard, P., Sindermann, H., Peukert, M., and Nagel, G.A. (1988). Hexadecylphosphocholine (D 18506) in the topical treatment of skin metastases: a phase-I trial. Onkologie11, 295–296.10.1159/000216563Search in Google Scholar

Unger, C., Damenz, W., Fleer, E.A., Kim, D.J., Breiser, A., Hilgard, P., Engel, J., Nagel, G., and Eibl, H. (1989). Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity in vitro and in vivo. Acta Oncol.28, 213–217.Search in Google Scholar

Vogler, W.R. and Berdel, W.E. (1993). Autologous bone marrow transplantation with alkyl-lysophospholipid-purged marrow. J. Hematother.2, 93–102.10.1089/scd.1.1993.2.93Search in Google Scholar

Zimmermann, K.C., Bonzon, C., and Green, D.R. (2001). The machinery of programmed cell death. Pharmacol. Ther.92, 57–70.10.1016/S0163-7258(01)00159-0Search in Google Scholar

Published Online: 2005-07-05
Published in Print: 2005-03-01

©2004 by Walter de Gruyter Berlin New York

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.029/html
Scroll to top button