Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 4, 2014

Biophysical characterization of polyomavirus minor capsid proteins

  • Oliver Burkert , Susanne Kreßner , Ludwig Sinn , Sven Giese , Claudia Simon and Hauke Lilie EMAIL logo
From the journal Biological Chemistry

Abstract

The murine polyomavirus encodes three structural proteins, VP1, VP2 and VP3, which together form the viral capsid. The outer shell of this capsid is composed of the major capsid protein VP1, the inner shell consists of VP2 and its N-terminally truncated form VP3. These two minor capsid proteins interact with their identical C-terminal part in the central cavity of VP1 pentamers, building the capsid assembly unit. While the VP1 structure and functions are well studied, VP2 and VP3 are poorly understood. In order to get a detailed insight into the structure and function of the minor capsid proteins, they were produced recombinantly in Escherichia coli as inclusion bodies and refolded in vitro. The success of refolding was strictly dependent on the presence of detergent in the refolding buffer. VP2 and VP3 are monomeric and their structures exhibit a high α-helical content. The function of both proteins could be monitored by complex formation with VP1. Furthermore, we could demonstrate a hemolytic activity of VP2/VP3 in vitro, which fits well into a postulated membrane interaction of VP2 during viral infection.


Corresponding author: Hauke Lilie, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany, e-mail:
aPresent address: Max-Delbrück-Centrum für Molekulare Medizin, Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany.

Acknowledgments

We thank Robert Garcea for providing the genes of polyoma VP2 and VP3. Jens Pettelkau is acknowledged for performing mass spectrometry. This work was funded by the Deutsche Forschungsgemeinschaft in context of the GRK 1026 ‘Conformational changes in macromolecular interactions’.

References

Abbing, A., Blaschke, U.K., Grein, S., Kretschmar, M., Stark, C.M., Thies, M.J., Walter, J., Weigand, M., Woith, D.C., Hess, J., et al. (2004). Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. J. Biol. Chem. 279, 27410–27421.10.1074/jbc.M313612200Search in Google Scholar PubMed

Barouch, D.H. and Harrison, S.C. (1994). Interactions among the major and minor coat proteins of polyomavirus. J. Virol. 68, 3982–3989.10.1128/jvi.68.6.3982-3989.1994Search in Google Scholar

Chen, X.S., Stehle, T., and Harrison, S.C. (1998). Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J. 17, 3233–3240.10.1093/emboj/17.12.3233Search in Google Scholar PubMed PubMed Central

Daniels, R., Rusan, N.M., Wadsworth, P., and Hebert, D.N. (2006a). SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol. Cell. 24, 955–966.10.1016/j.molcel.2006.11.001Search in Google Scholar PubMed

Daniels, R., Rusan, N.M., Wilbuer, A.K., Norkin, L.C., Wadsworth, P., and Hebert, D.N. (2006b). Simian virus 40 late proteins possess lytic properties that render them capable of permeabilizing cellular membranes. J. Virol. 80, 6575–6587.10.1128/JVI.00347-06Search in Google Scholar PubMed PubMed Central

Delos, S.E., Cripe, T.P., Leavitt, A.D., Greisman, H., and Garcea, R.L. (1995). Expression of the polyomavirus minor capsid proteins VP2 and VP3 in Escherichia coli: in vitro interactions with recombinant VP1 capsomeres. J. Virol. 69, 7734–7742.10.1128/jvi.69.12.7734-7742.1995Search in Google Scholar

Duronio, R.J., Jackson-Machelski, E., Heuckeroth, R.O., Olins, P.O., Devine, C.S., Yonemoto, W., Slice, L.W., Taylor, S.S., and Gordon, J.I. (1990). Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc. Natl. Acad. Sci. USA 87, 1506–1510.10.1073/pnas.87.4.1506Search in Google Scholar PubMed PubMed Central

Erickson, K.D., Bouchet-Marquis, C., Heiser, K., Szomolanyi-Tsuda, E., Mishra, R., Lamothe, B., Hoenger, A., and Garcea, R.L. (2012). Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog. 8, e1002630.10.1371/journal.ppat.1002630Search in Google Scholar PubMed PubMed Central

Estes, M.K., Huang, E.S., and Pagano, J.S. (1971). Structural polypeptides of simian virus 40. J. Virol. 7, 635–641.10.1128/jvi.7.5.635-641.1971Search in Google Scholar

Geiger, R., Andritschke, D., Friebe, S., Herzog, F., Luisoni, S., Heger, T., and Helenius, A. (2011). BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat. Cell Biol. 13, 1305–1314.10.1038/ncb2339Search in Google Scholar PubMed

Giorda, K.M., Raghava, S., Zhang, M.W., and Hebert, D.N. (2013). The viroporin activity of the minor structural proteins VP2 and VP3 is required for SV40 propagation. J. Biol. Chem. 288, 2510–2520.10.1074/jbc.M112.428425Search in Google Scholar

Gluck, J.M., Hoffmann, S., Koenig, B.W., and Willbold, D. (2010). Single vector system for efficient N-myristoylation of recombinant proteins in E. coli. PLoS One 5, e10081.10.1371/journal.pone.0010081Search in Google Scholar

Griffith, J.P., Griffith, D.L., Rayment, I., Murakami, W.T., and Caspar, D.L. (1992). Inside polyomavirus at 25-A resolution. Nature 355, 652–654.10.1038/355652a0Search in Google Scholar

Jones, D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202.10.1006/jmbi.1999.3091Search in Google Scholar

Lange, C. and Rudolph, R. (2008). Production of Recombinant Proteins for Therapy, Diagnostics, and Industrial Research by in Vitro Folding. Protein Folding Handbook (Wiley-VCH Verlag GmbH: Weinheim, Germany), pp. 1245–1280.Search in Google Scholar

Leavitt, A.D., Roberts, T.M., and Garcea, R.L. (1985). Polyoma virus major capsid protein, VP1. Purification after high level expression in Escherichia coli. J. Biol. Chem. 260, 12803–12809.10.1016/S0021-9258(17)38948-2Search in Google Scholar

Lin, W., Hata, T., and Kasamatsu, H. (1984). Subcellular distribution of viral structural proteins during simian virus 40 infection. J. Virol. 50, 363–371.10.1128/jvi.50.2.363-371.1984Search in Google Scholar PubMed PubMed Central

Moreland, R.B., Montross, L., and Garcea, R.L. (1991). Characterization of the DNA-binding properties of the polyomavirus capsid protein VP1. J. Virol. 65, 1168–1176.10.1128/jvi.65.3.1168-1176.1991Search in Google Scholar PubMed PubMed Central

Norkin, L.C., Anderson, H.A., Wolfrom, S.A., and Oppenheim, A. (2002). Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J. Virol. 76, 5156–5166.10.1128/JVI.76.10.5156-5166.2002Search in Google Scholar PubMed PubMed Central

Raghava, S., Giorda, K.M., Romano, F.B., Heuck, A.P., and Hebert, D.N. (2011). The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog. 7, e1002116.10.1371/journal.ppat.1002116Search in Google Scholar PubMed PubMed Central

Raghava, S., Giorda, K.M., Romano, F.B., Heuck, A.P., and Hebert, D.N. (2013). SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release. Biochemistry 52, 3939–3948.10.1021/bi400036zSearch in Google Scholar PubMed PubMed Central

Rainey-Barger, E.K., Magnuson, B., and Tsai, B. (2007). A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J. Virol. 81, 12996–13004.10.1128/JVI.01037-07Search in Google Scholar

Rayment, I., Baker, T.S., Caspar, D.L., and Murakami, W.T. (1982). Polyoma virus capsid structure at 22.5 A resolution. Nature. 295, 110–115.10.1038/295110a0Search in Google Scholar

Sahli, R., Freund, R., Dubensky, T., Garcea, R., Bronson, R., and Benjamin, T. (1993). Defect in entry and altered pathogenicity of a polyoma virus mutant blocked in VP2 myristylation. Virology 192, 142–153.10.1006/viro.1993.1016Search in Google Scholar

Salunke, D.M., Caspar, D.L., and Garcea, R.L. (1986). Self-assembly of purified polyomavirus capsid protein VP1. Cell 46, 895–904.10.1016/0092-8674(86)90071-1Search in Google Scholar

Schowalter, R.M. and Buck, C.B. (2013). The Merkel cell polyomavirus minor capsid protein. PLoS Pathog. 9, e1003558.10.1371/journal.ppat.1003558Search in Google Scholar

Simon, C., Schaepe, S., Breunig, K., and Lilie, H. (2013). Production of polyomavirus-like particles in a Klgal80 knockout strain of the yeast Kluyveromyces lactis. Prep. Biochem. Biotechnol. 43, 217–235.10.1080/10826068.2012.750613Search in Google Scholar

Smith, A.E., Lilie, H., and Helenius, A. (2003). Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett. 555, 199–203.10.1016/S0014-5793(03)01220-1Search in Google Scholar

Sreerama, N. and Woody, R.W. (1993). A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 209, 32–44.10.1006/abio.1993.1079Search in Google Scholar

Sreerama, N., Venyaminov, S.Y., and Woody, R.W. (1999). Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci. 8, 370–380.10.1110/ps.8.2.370Search in Google Scholar

Stehle, T. and Harrison, S.C. (1996). Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4, 183–194.10.1016/S0969-2126(96)00021-4Search in Google Scholar

Stehle, T., Yan, Y., Benjamin, T.L., and Harrison, S.C. (1994). Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163.10.1038/369160a0Search in Google Scholar PubMed

Streuli, C.H. and Griffin, B.E. (1987). Myristic acid is coupled to a structural protein of polyoma virus and SV40. Nature 326, 619–622.10.1038/326619a0Search in Google Scholar PubMed

Tsai, B., Gilbert, J.M., Stehle, T., Lencer, W., Benjamin, T.L., and Rapoport, T.A. (2003). Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22, 4346–4355.10.1093/emboj/cdg439Search in Google Scholar PubMed PubMed Central


Supplemental Material: The online version of this article (DOI 10.1515/hsz-2014-0114) offers supplementary material, available to authorized users.


Received: 2014-2-2
Accepted: 2014-4-1
Published Online: 2014-4-4
Published in Print: 2014-7-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0114/html
Scroll to top button