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Abstract: The various activities of human movements have been discussed for several years, 
such as sports activities, daily life activities, and so on. Their detection and classification have 
given crucial information about a person’s behaviour and health status. So, there has always been 
a purpose for detecting and classifying these activities for real-life problems. Behavioural 
recognition, fall detection, intrusion detection, human health prediction model, ambulatory 
monitoring, smart access to electronic appliances, etc., are the main motives of the detection of 
physical activity in the context of daily life. Nowadays, various types of wearable sensors are 
available in tiny sizes due to the advancements in miniature technology in electronic devices, 
which proved very useful for detecting human motions. Here in this article, some important 
methodologies, physical activity basics, and their classification using machine learning and deep 
learning approaches are discussed in the context of wearable sensors. After reading this article, 
the researcher could summarise the whole theory and technical aspects of activity recognition. 
Wearable sensors have gained tremendous traction for sensing human motion due to their various 
advantages over other sensors. 

Keywords: wearable sensors; deep learning models; machine learning models; accelerometer; 
gyroscope; activity recognition. 
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1 Introduction 

Any bodily movement resulting in energy expenditure is 
generally considered physical activity, and exercise is 
defined as the subset of physical activity (Hills et al., 2014). 
Physical activities like bathing, eating, walking, dressing, 

toileting, sitting, standing, lying, etc., are generally 
considered as an activity of daily living (ADLs) (Hall and 
Frcpc, 2012). The ADLs is further divided into two parts 
basic and instrumental ADLs (Koyano et al., 1988). Basic 
activities (BA) of daily living are required for personal care, 
such as bathing, eating, dressing, stair up and stair-down, 
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etc. (Yang et al., 2011; Tolstikov et al., 2011; Van Kasteren 
et al., 2010; Hong and Ohtsuki, 2011) Instrumental 
activities or complex activities (CA) are the core activities 
of daily living for living independently, including preparing 
meals, doing household work, using the telephone, 
managing money, etc. (Hall and Frcpc, 2012). Physical 
activity assessment could be done in two ways one is a 
subjective assessment, and the other is an objective 
assessment. Subjective assessments such as surveys, 
questionnaires, and diaries are considered, but these 
methods have been followed inaccuracy in some extent due 
to human error involvement. In the objective assessment of 
physical activity, motion sensors, like accelerometers and 
gyroscopes, are considered for detecting human motion, 
posture orientation, and the intensity of movement (Yang 
and Hsu, 2010). Acceleration generated by human 
movement could be measured by the accelerometer along its 
reference axis for quantifying physical movement. 
Information about the intensity and frequency of movement 
are also obtained with the accelerometer (Chen and Bassett, 
2005). 

It is also evident that the assessment of various physical 
activities depends on the type of physical activity and 
duration of those activities. Pedometers are well suited as 
far as walking is concerned, where step counts are the 
measured quantity. Heart rate monitoring has been used for 
moderate activities. Triaxial accelerometers have been used 
for long-term and free-living types of physical activities 
(Freedson and Miller, 2000). The articles (Westerterp and 
Bouten, 1997; Eston et al., 1998; Welk and Corbin, 1995; 
Pereira and Freedson, 1997) described a better picture of 
how and why the selection of sensor completely depends on 
which type of activity is under consideration. Human 
activity recognition (AR) by capturing images and videos 
with the help of a video sensor has been studied in several 
studies (Cichy et al., 2016; Onofri et al., 2016). The wireless 
signal or Radio Frequency signal-based human AR utilises 
wireless signal distortion with the interaction of human 
beings for AR (Kianoush et al., 2017). The wearable 
sensors, smartphones, and inertial measurement units have 
been widely used for AR due to the advancement in the 
miniaturisation of electronic devices and their various 
advantages over other modes of sensing such as vision and 
wireless sensing. The vision-based AR systems require a 
clear line of sight, costly installation maintenance, high 
computation cost, static position, and illuminations. The 
wireless signal or radiation-based AR systems have various 
health-related issues (Nweke et al., 2018a). The Wearables 
sensors are characterised by their simple use, low power 
consumption, ease to wear, cheap installation, etc. Inertial 
sensors are defined as the force sensors that respond to 
linear acceleration (accelerometer) along with one or several 
axes and to angular motion (gyroscope) along with one or 
several directions (Yang and Hsu, 2010). The operating 
principle of an accelerometer is based on a mechanical 
sensing element called seismic mass or proof mass which is 
attached to mechanical suspension along the reference axis. 
Whenever the force is exerted on seismic mass, the mass is 

deflected along the reference axis which would be directly 
proportional to an applied acceleration. Further, this 
deflection is converted to the electrical quantity (Godfrey et 
al., 2008; Öberg et al., 2004). The importance of AR has 
been accepted by the research community due to its various 
real-time applications for the betterment of human life, such 
as elderly care, healthcare, fitness monitoring, sports 
analytics, security and surveillance, biometrics, etc. 
Wearable sensors-based AR is very useful in the case of 
getting rehabilitation of a patient after the attack of disease 
such as Parkinson’s disease, sleep apnea, heart attack, and 
so on. Monitoring and care for these patients are required 
after major operations, but for that, the patient has to be 
present in the hospital compound for a long time. Today’s 
technology-based wearable sensors can be able to send 
information about the patient’s activities to a doctor or nurse 
who is far away from the patient (Mukhopadhyay, 2015). 
Falls are a very common problem in elderly people by 
which elderly populations have been facing dire 
consequences in their daily life due to various physical and 
mental problems after getting falls (Shany et al., 2012; Aziz 
and Robinovitch, 2011). Some of the applications of 
wearable sensor-based AR are given in Figure 1, such as  
e-health, e-emergency, e-factory, etc. E-health is the field 
where remote location health assistance is provided in the 
case of elderly care, patient monitoring, fall detection, 
rehabilitation, fitness monitoring, and so on. The emergency 
help in case of an earthquake, flood, cloud burst, riots, a 
stampede in public places, etc., is covered in the  
e-emergency domain. E-factory where workers’ behaviour 
in a factory environment is monitored to protect them from 
any accident during working with heavy machines. The 
detection of human motions by analysing the data collected 
from sensors while the user is performing some actions is 
known as AR (Gupta, 2021). The wearable devices consist 
of different sensors like accelerometers, gyroscopes, and 
magnetometers that can be easily used for data collection 
related to human motions, and further, that data can be 
utilised for AR. Nowadays, the easy availability of different 
wearable devices with inbuilt sensors, such as 
smartwatches, smartphones, wrist bands, smart clothes, etc., 
makes them very useful for AR. The wearable  
sensors-based AR is focused in this paper due to its various 
advantages of it over other sensor modalities-based AR. The 
basic steps such as data acquisition, preprocessing, feature 
extraction and classification are shown in Figure 3 for AR. 
This comprehensive survey for wearable sensors-based AR 
includes the study of the importance of sensor locations, 
preprocessing of acquired data, feature extraction, 
conventional machine learning models, and deep learning 
models for classification. 

To provide a comprehensive survey of wearable  
sensor-based AR, we have surveyed around 700 articles, 
including research as well as review by typing keywords in 
Google scholar like ‘wearable sensor-based AR’, 
‘smartphone-based AR methods’, and ‘filters used in data 
acquisition for AR’, ‘different machine learning techniques 
for AR’, ‘deep learning models for AR’, ‘wearable  
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sensor-based datasets for AR’ and others. The AR models 
based on vision sensors, wi-fi, and RADAR have been 
neglected from the study and the article mainly based on 
wearable sensors where data were taken locally are 
considered specifically. Therefore, in this way at last 257 
articles are selected for writing this review paper. Some of 
the well-written review papers (Wang et al., 2019a; Nweke 
et al., 2018a; Wang et al., 2019; Ramanujam et al., 2021) 
are considered to define the structure of the paper. 

Figure 1 Applications of human AR (see online version for 
colours) 

 

Figure 2 Some of the widely used sensor locations (see online 
version for colours) 

 

The rest of the article is structured as follows. Section 1 
describes sensor locations, the importance of location for 
particular activity and design issues related to wearable 
sensor for real time application of AR. Section 2 describes 
the preprocessing of acquired data in terms of filtration and 
segmentation. Section 3 has two subsections for manually 
extracted features and each subsection describes numerous 
techniques for feature extraction in time and frequency 
domains respectively. Section 4 presents the feature 
dimension and selection techniques. Section 5 describes the 
overview of traditional methods of classification. Section 6 
presents the state-of-the-art methods of deep learning for 
AR. Section 7 discusses the theme of AR and Section 8 
concludes the review and includes some widely accepted 
publicly available datasets. 

2 Wearable sensor locations, their detected 
activities and design issues 

Physical activity assessment methods vary according to the 
positioning of the sensor, the number of sensors, type of 
activity, statistical techniques, and signal processing 
methods (filtering, pattern recognition) (Foerster et al., 
1999). In the late 1980 and 1990s, the devices and sensors 
which were used had massive structures, low storage and 
processing capabilities but nowadays the scenario has 
changed. These days the advancement in integrated 
technology has gained advantages in terms of oversize, 
speed, and processing capabilities compared to the previous 
one (Lee et al., 2010). 

The growing advancements in electronics industries 
attract more researchers towards the designing of tiny 
devices with more features for fitness alert devices such as 
smartwatches, smart bands, heart rate monitors, fabric-based 
tracking devices, and so on. The wearable technology 
market for healthcare services is rapidly growing due to user 
comfort and easy-to-wear capabilities with a standard 
physiological data-taking capacity (Mukhopadhyay, 2015). 
Different kinds of sensors are available to measure human 
physiological parameters. Nowadays, it is possible to 
measure the physiological signals for very long durations 
with less power consumption and low-cost processing. 

The body’s temperature is a very common physiological 
parameter in wearable sensing technology. Medical stress, 
which creates various health-related consequences, can be 
detected with the help of the profile of temperature sensors. 
Body temperature is a very useful physiological parameter 
in activity classification (Parkka et al., 2006; Leonov, 2013; 
Winkley et al., 2012). The various methods are available for 
measuring the heart rate based on the brightness of a 
person’s face, sound, etc.; further, it can be used to detect 
disease and activities (Zhang et al., 2010; Tamura et al., 
2014; Poh et al., 2010; Inomata and Yaginuma, 2014). 
Accelerometers have been widely used sensors for the 
detection of physical activities such as the detection of falls 
(Shany et al., 2012; Kan and Chen, 2012; D’Angelo et al., 
2014). Electrocardiograph sensors are very useful and 
widely used to assess the short-term cardiovascular disease. 
These sensors are very common for getting information on 
chronic heart patients. ECG signal provides crucial 
information regarding the regularity of heartbeats and R-R 
interval for knowing the heart’s health. Nowadays, various 
wearable ECG sensors in different forms are available with 
low power and high resolution (Yan et al., 2011). The 
various wearable devices are in trend in these days due to 
their comfort to wear, smartness and specification of inbuilt 
sensors such as accelerometers, gyroscopes, magnetometers, 
light sensors, and so on (Zhuang et al., 2019). The location 
of the wearable devices is very important for getting the 
data quality because different activities impose different 
impacts on different body parts depending on the performed 
activities (Lawal and Bano, 2020). The Sensor placement 
was addressed in a study where different activities such as 
jogging, walking on a treadmill, stair ascent, stair descent, 
sitting, standing, and lying were detected with six sensors 
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placed in different locations (left hip, left thigh, left wrist, 
chest, lower back, left foot) and it was observed that best 
activity signal obtained from the hip position (Cleland et al., 
2013). The detail of some previous studies for AR with 
different locations, sensors and activities are given in  
Table 1. 

Some of the widely used sensor locations on the human 
body are given in Figure 2. Sensor location selection is 
largely depends on the type of activities and for that some 
research papers have considered different location for their 
own selected activities such as wrist (Shoaib et al., 2016; 
Villar et al., 2015; Leutheuser et al., 2013), hip (Leutheuser 

et al., 2013; Banos et al., 2015; Shoaib et al., 2014; Liu et 
al., 2012; Debache et al., 2020), waist (Chung et al., Xie et 
al., 2018; Hossain Shuvo et al., 2020; Ahmed et al., 2020; 
Wang et al., 2016; Debache et al., 2020; Zebin et al., 2018; 
Ahmed et al., 2019) chest (Altun and Barshan, 2010; 
Zhuang et al., 2019; Chung et al., 2019; Attal et al., 2015), 
ankle (Chung et al., 2019; Attal et al., 2015; Wang et al., 
2016; Debache et al., 2020), arms (Altun and Barshan, 
2010; Chung et al., 2019; Shoaib et al., 2014; Wu et al., 
2012), thigh (Attal et al., 2015; Trabelsi et al., 2012; 
Abhayasinghe and Murray, 2014; Hendry et al., 2020; 
Trabelsi et al., 2013) etc. 

Table 1 Different body locations of wearable sensors and their detected activities 

Ref. Sensor location sensors Detected activities 

Karantonis et al. 
(2006) 

Waist Accelerometer Sit to stand, stand to sit, lie, lie to sit, sit to 
lie, walking, falls. 

Pärkkä et al. (2006) Wrist and chest Heart rate, altitude, and 
acceleration 

Lying, sitting, standing, Nordic walk, 
walking, rowing, cycling, running, etc. 

Yang et al. (2008) Left shin, right shin, left wrist, 
right wrist, waist, left thigh, 

right thigh, right bicep 

Accelerometer and Gyroscope Sit to stand, stand to sit, sit to lie, lie to sit, 
stand to kneel, kneel to stand, jump, rotate 
right, rotate left, bend upstairs and 
downstairs. 

Chen et al. (2008) wrist Accelerometer Standing, sitting, walking, running, 
vacuuming, scrubbing, brushing teeth, and 
working at the computer. 

Yin et al. (2008) Left shoulder, left ankle, waist Light, temperature, accelerometer, 
magnetometer, and microphone 

Slipping on the ground, falling backward, 
falling forwards, etc. (abnormal activities) 

Atallah et al. (2009) Ear Accelerometer + ambient sensors Preparing a meal, eating, physiological 
measurement, walking between rooms, 
getting dressed and washing, receiving 
visitors, etc. 

Bächlin et al. (2010) Shank, lower back, and thigh Acceleration Freezing of gait detection for Parkinson’s 
disease patients. 

Atallah et al. (2011) Ankle, knee, waist, arm, chest, 
and ear 

Accelerometer Running in a corridor, wiping the table, 
walking, lying, drinking, eating, etc. 

Bulling et al. (2012) The opposite side of the eye, 
forehead, head 

Skin electrodes and head-mounted 
accelerometer 

Eye and head movements for recognition 
of reading 

Cleland et al. (2013) Left hip, left foot, left thigh, 
left wrist, chest, lower back 

Accelerometer Walking, jogging, sitting, lying, standing, 
upstairs and downstairs 

Reyes-Ortiz et al. 
(2016) 

Smartphone carrying with belt, 
chest, ankle, wrist, trunk, upper 

and lower extremities. 

Accelerometer, Gyroscope, 
Magnetometer. 

Sit to lie, sit to stand, stand to sit, lie to sit, 
stand to lie, lie to stand. 

Gupta and Dallas 
(2014) 

waist Accelerometer Stand to sit, sit to stand, stand to kneel, 
run, jump, walk and sit 

Altini et al. (2015) Wrist, ankle, thigh, right hip, 
and chest 

ECG, accelerometer, calorimeter Lying, sitting, standing, household 
activities, walking 

Zhu et al. (2015) Right thigh, waist, and right 
hand 

Orientation, acceleration, angular 
rate, and magnetic field 

Walking, lying, standing, sitting, sit to 
stand, stand to sit, sit to lie, lie to sit, and 
hand gestures 

Wang et al. (2016) Waist and ankle Accelerometer Sitting, lying, standing up from lying, 
standing, walking, running, bicycling, 
jumping 

Moschetti et al. 
(2017) 

Index finger and index Acceleration Eating with the hand, eating with a fork, 
drinking with a glass, eating with a spoon, 
drinking with a cup, drying the hair with a 
hair dryer, brushing the hair with a hair 
brush. 
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Table 1 Different body locations of wearable sensors and their detected activities (continued) 

Ref. Sensor location sensors Detected activities 

Guo and Wang 
(2018) 

Left thigh, right ankle, left 
arm, and right waist 

Accelerometer Going downstairs, climbing stairs, kicking 
left leg, pressing right and left leg, turning 
right waist, running, walking. 

Insole-based et al. 
(2018) 

Insole, wrist, thigh Accelerometer, gyroscope, 
position 

Lie, sit, stand, walk, descend stairs, ascend 
stairs, washing dishes, etc. 

Guo et al. (2019) Right wrist, left arm, waist, 
right ankle, and left thigh. 

Accelerometer and gyroscope Go downhill, running, walking, practice 
gymnastic, rope skipping, cycling 

Quaid and Jalal 
(2020) 

Wrist, knee, and back Accelerometer Basketball, badminton, skipping, football, 
cycling, and table tennis 

Pham et al. (2020) Sole of e-Shoe, wrist Accelerometer and gyroscope Brushing, washing hand, Slicing, Peeling, 
Up stair, downstair mixing, wiping, 
sweeping floor, cycling etc. 

Randhawa et al. 
(2020) 

Fabric sensor-based jacket Stretch, pressure and 
accelerometer sensors 

Still, standing up, twist jump-turn, dancing 
and violent actions 

Cross et al. (2020) Inertial sensor units on upper 
body chest, waist, right and left 

wrist, 

Accelerometer and gyroscope Filed hockey- passing, drive, drag flick, 
dribbling, receiving and tackling 

Gao et al. (2021b) iPhone7 in right trouser pocket Accelerometer Walking, jumping, jogging, going 
downstairs and upstairs 

Fu et al. (2021) Left thigh Accelerometer, gyroscope, 
magnetometer and air pressure 

sensors 

Sit, lie, walk, stand, running, go upstirs and 
downstairs 

Khatun et al. (2022) Smartphone in right trouser 
pocket 

Accelerometer and gyroscope Sitting/standing, walking, jogging and 
running 

Link et al. (2022) wrist Accelerometer Volleyball – underhand serve, block and 
dig, playing Frisbee 

 
The manufacturing of small sizes wearable sensors with the 
specification of acquiring, processing, sending and 
receiving data is a challenging task and the research have 
been going on in that direction. The pervasive and 
ubiquitous computing technology largely depends on smart 
sensors. Some design issues in smart wearable sensors are 
shown in Figure 3. 

Figure 3 Some challanging design issues in wearables  
(see online version for colours) 

 

In the following headings the various steps in AR modelling 
are discussed as shown in Figure 4. 

3 Pre-processing 

Pre-processing step of AR is generally known for filtering 
and data segmentation and in this section, the various 
filtering and data segmentation techniques are discussed 
which have been used in previous state-of-the-art research. 

3.1 Filtering 

The acquired data from wearables require to be passed 
through a filtering step before feature extraction. Pre-
processing is an important step in AR modelling due to its 
efficient impact on the model’s overall performance. The 
data obtained from various wearables contains different 
types of noise due to mishandling of sensors, location 
displacement, loose tightening on body, etc., so appropriate 
filtering is required to denoising the data (Atallah et al., 
2007; Fontana et al., 2015; Ordóñez et al., 2013). Most of 
the research work utilised filtration to remove the 
gravitational component from the acceleration data 
(Leutheuser et al., 2013; Anguita et al., 2013; Reyes-Ortiz  
et al., 2016; Karantonis et al., 2006). Some of the previously 
used filters in wearable sensor based AR modelling are 
moving average (span = 3,5,9) and Butterworth low pass 
filter (Nam and Park, 2013), mean filtering (sliding window 
of length 5) (Hu et al., 2014), moving average filter  
(span = 5) (Adaskevicius, 2014), median filter (size = 3) to 
remove the spikes and and 4th order infinite impulse 
response low pass elliptic filter (cut off frequency = 0.3 Hz) 
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to remove the gravitational component of acceleration 
signal (Moncada-Torres et al., 2014) , digital low pass filter 
(cut off frequency = 0.25Hz) (Bayat et al., 2014), moving 
average low pass filter (span = 5) (Kalantarian et al., 2015), 
second order Butterworth high pass filter with cut off 
frequency of 0.25 Hz (Machado et al., 2015), 3rd order 
media filter, low pass Butterworth filter (cut off frequency 
of 20 Hz) and high pass filter with cut off frequency of 
0.3Hz (Reyes-Ortiz et al., 2016), Kalman filter (Chen and 
Shen, 2017), Butterworth low pass filter (cut off frequency 
of 20 Hz) and Butterworth low pass filter (cut off frequency 
of 0.3Hz) (Hassan et al., 2018), Butterworth low pass filter 
(Gani et al., 2019), 2nd order low pass Butterworth filter 
(cut off frequency of 6Hz) (Hussain et al., 2019). It is also 
evident that sometimes filtering eliminates the required 
information therefore filtering may not always be required 
(Reyes-Ortiz et al., 2016). 

Figure 4 Conventional method for AR (see online version for 
colours) 

 

3.2 Data segmentation 

The time duration of performed activity is larger than the 
sampling rate of sensors. Therefore, the sample extracted 
from sensors at a particular time cannot be able to represent 
a particular activity so that the extracted samples are 
segmented into different groups of the same length and 
sometimes in different lengths. This group of samples is 
known as the window and the samples contained in this 
window are more suitable for estimating an activity rather 
than the sample at any instant. Data segmentation is a 
process where the incoming data stream is partitioned into 
packets of samples by which activity can be recognised in a 
more sophisticated way (Triboan et al., 2019). The different 
methods for data segmentation have been used previously 
and most of them are divided into three parts, event-related, 
action-related and sliding window type. Separation of 
samples is carried out on the basis of events in event related 
window technique and in the same way action defines the 
window length in action related windowing. In the sliding 
window, the data streams are segmented into fixed length 
with overlapping and sometimes with no overlapping. The 
overlapping is required to retain the edge information in the 
corners of each window. The window size or length is an 
important factor in AR and its impact on classification 
performance was studied in Nurwulan and Jiang (2020). 
The segmentation of data obtained from basic repetitive 
activities like jogging, walking, sitting, and standing 
requires a small window size. The CA like eating, drinking, 
talking with someone, etc., cannot be estimated with a small 
size window due to their rare occurrence compared to BA 

(Shoaib et al., 2016). The window size of 0.08 to 30 sec has 
been widely used in past (Berchtold et al., 2010; Murao and 
Terada, 2014; Zhang and Sawchuk, 2012a; Chavarriaga et 
al., 2013; Suto et al., 2016; Laudanski et al., 2015; Hassan 
et al., 2018; Chernbumroong et al., 2014; Wang et al., 2013; 
Machado et al., 2015; Bao and Intille, 2004; Guo et al., 
2012; Kalantarian et al., 2015; Catal et al., 2015; Wang et 
al., 2019a; Liu et al., 2011). The overlapping percentage of 
sliding window and size are also described in table 2 and it 
is evident that 50% overlapping is widely used. 

4 Feature extraction 

Features are useful information about the sensor’s data 
within the defined length of window and the input to the 
machine learning algorithms. There are two feature 
extraction methods; the first is manually extracted by 
domain expertise (Morales and Akopian, 2017) and the 
other is automatically extracted by deep learning 
frameworks (Ronao and Cho, 2016). The manually 
extracted features are those which are extracted on the basis 
of human expertise in that application of interest. These 
features are extracted from the samples of a particular 
window in both the domain time and frequency. Those 
features that contain unique information about different 
activities and can differentiate them are considered useful or 
good features such as standard deviation variance, mean, 
and fundamental frequency (Hassan et al., 2018; Suto et al., 
2016). Manually extracted features have gained much 
attention in AR (Hassan et al., 2018; Li et al., 2009). The 
low processing time and less computation requirement for 
extraction of these features make them capable of designing 
lightweight ubiquitous systems for AR (Morales and 
Akopian, 2017). 

Nowadays, deep learning frameworks have been widely 
explored in AR for automatic feature extraction and 
classification (Hammerla et al., 2015; Sani et al., 2017a). 
The advantage of in-depth features is that they are 
automatically extracted by defined layers and do not require 
expert domain knowledge. 

4.1 Manually extracted features 

The raw time series data contains many samples for a 
concerning activity, but the reading of a sample at a 
particular time instant does not carry sufficient information 
to represent that activity. In the same way, the samples of 
different windows consist of different samples for the same 
activity. Therefore, some valuable and quantitative sets of 
variables are required to differentiate the different activities 
and that sets of variables are called as manually extracted 
features. A vast range of manually extracted features has 
been investigated to enhance the performance of AR 
architectures (Attal et al., 2015; Wang et al., 2016; Wang et 
al., 2019a; Wu et al., 2012). Broadly these features are 
divided into time and frequency space. 
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4.1.1 Time domain features 

These features are calculated directly from sensor data 
inside a window and provide statistical information about 
the signal. Extracting these features requires a clear 
understanding of the quantitative information and related 
data statistics for concerned activities in a way that how and 
which sets of time-domain statistics are effective for better 
discrimination between different activities. For example, the 
signal magnitude area (SMA), the sum of acceleration in all 
the axes, provides useful information to discriminate 
activities like sitting and walking (Machado et al., 2015). 
SMA and other features are found effective in enhancing 
recognition performance (Hassan et al., 2018). The 
activities like staircase, walking and standing have been 
recognised effectively with standard deviation in Laudanski 
et al. (2015). Some of the widely applied features in time 
domain are peak to peak (Machado et al., 2015; Zheng et 
al., 2013), autoregressive coefficient (Hassan et al., 2018), 
skewness (Zhang and Sawchuk, 2011; Janidarmian et al., 
2017), root mean square (RMS) (Maurer et al., 2006; 
Shoaib et al., 2014; Altun and Barshan, 2010; Zhuang et al., 
2019), variance (Ahmed et al., 2019, 2020), mean (Xie  
et al., 2018; Attal et al., 2015; Reyes-Ortiz et al., 2016), 
median (Ahmed et al., 2020; Attal et al., 2015; Sztyler and 
Stuckenschmidt, 2016) and so on. 

4.1.2 Frequency domain features 

The periodicity of obtained signal in a window is described 
by the features in frequency domain. Firstly, the segmented 
data in a particular window is transformed with different 
frequency transformation methods such as discrete wavelet 
transform (DWT) sometimes it is also called as discrete 
cosine transform (DCT), fast Fourier transform (FFT). The 
coefficients of FFT are useful for evaluating the magnitude 
of frequency components and signal energy distribution. 
Power spectral density (PSD) is the most important feature 
in the frequency domain and is widely used for AR. PSD 
has been extracted in Attal et al. (2015) to recognise 
dynamic activities like driving, cycling and walking. The 
corresponding frequency of PSD is known as peak 
frequency which is used in several studies (Figo et al., 2010; 
Nham et al., 2008; Moncada-Torres et al., 2014). The 
different activities of the same PSD have been discriminated 
with the help of entropy in Bao and Intille (2004), 
Moncada-Torres et al. (2014), Reyes-Ortiz et al. (2016) and 
Suto et al. (2017). Some other widely used frequency 
domain features for AR are DC component (Attal et al., 
2015; Sztyler et al., 2017), peak power (Ermes et al., 2008; 
Zebin et al., 2016; Zeng et al., 2014), spectral-energy  
(Suto et al., 2016; Sztyler et al., 2017), spectral-centroid 
(Leutheuser et al., 2013), FFT-coefficients (Dixon-Warren, 
2010; Wu et al., 2012) and so on. 

5 Dimension reduction and feature selection 

Manually extracted features in time, frequency and hybrid 
domains are large in size and contain redundant 
information. More features can be helpful for enhancing the 
classification performance, but at the same time, when 
information becomes large the system becomes slow, 
computationally inefficient and overfitted. Therefore, to 
reduce these shortcomings some methods are required for 
selecting the subset of features from the original set and 
these techniques are called as feature selection techniques. 
In another way, when the features are reconstructed in low 
dimensions from the original high dimensions, these 
methods are called dimension reduction techniques. 

Several dimension reduction techniques have been 
applied for AR in the recent past such as principal 
component analysis (PCA) (Suto et al., 2017; Hussain et al., 
2019), linear discriminant analysis (LDA) (Wan et al., 
2015), independent component analysis (ICA) (Attal et al., 
2015), Kernel PCA (KPCA) (Hassan et al., 2018), Kernel 
LDA (KLDA) (Schölkopf et al., 1998), Autoencoder 
(Wang, 2016), sparse filtering (Ngiam et al., 2011) and so 
on. The PCA is most frequently used method for dimension 
reduction where linear transformation of original features is 
carried out to remap them into low dimension space 
according to variance (high to low). KPCA transformed the 
input features into a large dimension space by nonlinear 
transformation with kernel function and then dimension 
reduced by PCA (Wu et al., 2007). LDA is another linear 
transformation method where inter-class variability is 
maximised and intra-class separability minimised to 
transform the original high dimension features into low 
dimension features. Its nonlinear version is KLDA (Wang et 
al., 2019). The lower dimension representation is carried out 
by the autoencoder by reducing the error (mean square 
error) between input and output (Van Der Maaten et al., 
2009). The performance of dimension reduction techniques 
like Fisher discriminant analysis (FDA), Kernel FDA 
(KFDA) and PCA were analysed in Tian et al. (2019). 

Feature selection is different rather than feature 
reduction because in feature reduction, the features are 
reconstrued in a low dimension space from the original 
features and in the case of feature selection some valuable 
features are selected from the original feature set. These 
features are selected according to the domain knowledge 
and can discriminate the different classes efficiently. The 
effective feature selection technique can enhance the 
classification performance with low computational cost and 
faster response. Various feature selection methods have 
been utilised for AR in previous past studies and broadly, 
these methods are divided into three parts, filter, wrapper 
and embedded method. 

In filter-based methods, some redundant features are 
thrown out by the relationship between input and output on 
the basis of statistical information, uniformity, similarity, 
correlation and distance (Dessi and Pes, 2015; Gheid and 
Challal, 2016). Some of the filter-based methods have been 
extensively explored in AR such as Mutual Information 
(MI) based (Cang and Yu, 2012), conditional mutual 
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information maximum (CMIM) (Gao et al., 2016), double 
input symmetrical relevance (DISR) (Meyer and Bontempi, 
2006), canonical correlation analysis (CCA) (Kaya et al., 
2014), joint mutual information (JMI) (Bennasar et al., 
2015), relief (Gupta and Dallas, 2014), sequential forward 
floating search (SFFS) (Ahmed et al., 2020) and so on. 

In a wrapper-based method, the feature subset is 
selected on the basis of the predicted accuracy of a 
predefined classifier and the process is continued until any 
addition of a feature gives an accuracy less than the 
accuracy obtained from the preselected feature set. The 
wrapper-based method gives a better feature subset 
compared to filter method but overfitting is occurred due to 
the involvement of the classifier (Chong et al., 2021). In a 
wrapper-based method, the involvement of the classifier 
frequently occurs due to the inclusion of a new feature 
subset, so these methods are computationally expensive and 
time-consuming (Guyon and Elisseeff, 2003). Some of the 
researchers (Amezzane et al., 2017) have studied the impact 
of wrapper-based methods in different studies (Amezzane  
et al., 2017; Chen et al., 2020c; Bashar et al., 2020). 

Embedded methods are based on the integration of filter 
and wrapper methods according to their merits (Li et al., 
2017). The frequently used embedded methods are Ridge 
regression (Liu et al., 2015) and Lasso (Li et al., 2017). 

The feature selection is used widely for the application 
of AR and readers can refer those for better understanding 
such as Gupta and Dallas (2014), Capela et al. (2015), 
Ahmed et al. (2020), Chong et al. (2021), Wang et al. 
(2016), Chetty et al. (2015), Chen et al. (2020a, 2020c), Fan 
et al. (2019), Amezzane et al. (2017), Bashar et al. (2020), 
Nweke et al. (2019), Zhang and Sawchuk (2011) and Helmi 
et al. (2021). 

6 Traditional classification algorithms 

In the classification phase, the features extracted from raw 
sensor data are mapped to different activity labels. 
Supervised and unsupervised learning are two approaches 
under traditional machine learning algorithms. The large 
labelled data is required for supervised learning and 
unsupervised learning works on unlabelled data. The model 
building is performed by training data and test data is used 
for validating the model in supervised learning. Supervised 
learning has been widely explored and proved efficient in 
many cases for AR. Some of the algorithms due to their 
performance has attracted more researchers in machine 
learning such as Multilayer Perceptron (MLP) (Bayat et al., 
2014; Azmi and Sulaiman, 2017; Subasi et al., 2020), 
random forest (RF) (Pavey et al., 2017; Dang, 2017; 
Mehrang et al., 2018; Shoaib et al., 2017), support vector 
machine (SVM) (Mehrang et al., 2017; Davila et al., 2017; 
Mannini et al., 2013; Cleland et al., 2013; Ouchi and Doi, 

2013), Naïve Bayes (NB) (Mortazavi et al., 2014; Azmi and 
Sulaiman, 2017; Yazdansepas et al., 2016; Subasi et al., 
2020), k-Nearest Neighbour (kNN) (Adaskevicius, 2014; 
Sani et al., 2017bl Kaghyan and Sarukhanyan, 2012; Liu  
et al., 2021; Ignatov and Strijov, 2016), artificial neural 
network (ANN) (Khan et al., 2014; Rustam et al., 2020; 
Bangaru et al., 2021; Suto and Oniga, 2018), decision trees 
(DT) (De Leonardis et al., 2018; Lu et al., 2020; Nweke  
et al., 2018b; Wang et al., 2020), etc. 

Artificial Hydrocarbon Network was proposed in Ponce 
et al. (2016) for recognition of physical activities and found 
immune to noisy and corrupt data. The voting rule-based 
ensemble learning algorithms were proposed in Nguyen  
et al. (2019), where several machine learning algorithms 
were used as the base learner for AR. It is evident that 
majority vote-based ensemble classifiers trained on 
randomly selected feature sets from the original feature set 
performed better than a single classifier (Subasi et al., 
2018). The different machine learning algorithms such as 
DT, NB, kNN, SVM and Feedforward Neural Network 
were analysed on a reduced feature set and found that k-NN 
and DT performed well in De Leonardis et al. (2018) 

There is no doubt that traditional supervised algorithms 
mentioned above proved very efficient in terms of accuracy 
but are not very efficient in terms of computational cost. 

Unsupervised learning is another branch of traditional 
machine learning algorithms where labelled data does not 
require. It is difficult to acquire a large amount of labelled 
data, so unsupervised learning is helpful in the case of 
unlabelled input data. The most frequently and extensively 
used unsupervised learning approaches are cluster-based, 
where the hidden data patterns are identified and divided 
into clusters based on probabilistic and Euclidian distance, 
each cluster representing a particular class. The popular 
unsupervised learning algorithms are Hidden Markov 
Models (HMM) (Uslu et al., 2013; Cheng et al., 2017), 
Gaussian Mixture Model (GMM) (Kwon et al., 2014; Attal 
et al., 2015), k-Means (Kwon et al., 2014; Attal et al., 
2015), etc. 

Many challenges have been faced by conventional 
machine learning algorithms. These algorithms are basically 
based on data-driven modelling and require large labelled 
sensor data. Hand-crafted feature extraction is very tedious 
and complex task and also requires expert domain 
knowledge. These algorithms are application specific and 
do not perform well on new sensor data of the same task. 
Incremental learning cannot be successfully applied on 
these algorithms. To overcome these challenges nowadays, 
deep learning is widely accepted due to their automatic 
feature extraction and classification capability. Table 2 
summarises a detailed information on some previous 
research in the conventional approach of AR. 
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Table 2 Summary of some research articles based on traditional methods 

Ref. Sensors 
Sampling 
frequency 

(Hz) 

Segmentation 
(windowing) 

Extracted features Classifier 
No. of 

activities 

Kwapisz  
et al. (2011) 

Accelerometer 
(smartphone) 

20 200 samples  
(10 sec) 

Average, standard deviation, 
Average and absolute 
difference, Average resultant 
acceleration, Time between 
peaks, Binned distribution 

Decision Tree (DT) 
(J48), Multi-layer 
perceptron (MLP) and 
logistic regression (LR) 

6 (basic 
activities) 

Nam and 
Park (2013) 

Accelerometer 
and barometric 
pressure sensor 

95 256 samples with 
128 samples 

overlapping (50%) 

Time domain: mean, standard 
deviation and slope 
Frequency domain: Energy, 
corelation coefficient and 
differential pressure 

Naïve Bayes, Bayes Net 
(BN), K-Nearest 
Neighbour (k-NN), DT, 
J48, MPL,LR 

11 (basic 
child 

activities) 

Barshan and 
Yüksek 
(2013) 

Accelerometer, 
Gyroscope and 
magnetometer 

25 125 samples  
(5 sec) 

Minimum, Maximum, mean, 
variance, skewness, kurtosis, 
autocorrelation sequence and 
peak of DFT 

ANNs, NB, 
dissimilarity based, 
three types of DTs, 
GMM, SVM 

19 (basic 
+complex 
activities) 

Hu et al. 
(2014) 

Accelerometer 
and gyroscope 

100 256 samples  
(2.56 sec) 

1st, 2nd and 3rd quartile, 
mean, standard deviation, 
energy, mean crossing rate, 
spectral peak position, 
spectrum peak value and 4 
PSD statistical features 

Constrained 
optimisation based 
extreme learning 
machine (COELM), add 
bias, b = 0 constrained 
optimisation extreme 
learning machine (b-
COELM), 1-versus rest 
proximal support vector 
machine (PrSVM), 
Balanced and refined 1-
versus rest proximal 
support machine (BR-
PSVM) 

6 (basic 
activities) 

Adaskevicius 
(2014) 

Accelerometer 20 100 samples (5 
sec) 

Average, standard deviation, 
maximum, minimum, 
frequency domain entropy, 
dominant frequency and 
average resultant acceleration 
(ARA) 

K-NN 6 (walking 
and 

exercising 
) 

Kwon et al. 
(2014) 

Accelerometer 
and gyroscope 
(smartphone) 

50 64 samples with 
50% overlap 

Average and standard 
deviation in both the domain 
time domain as well as in 
frequency domain 

K-means, GMM, 
Average linking 
Hierarchical 
Agglomerative 
Clustering (HIER) 

5 (basic 
activities) 

Bayat et al. 
(2014) 

Accelerometer 
(smartphone) 

100 128 samples  
(1.28 sec) with 
50% overlap 

Average peak occurrence in 
each window (APF), Variance 
of APF, root mean square, 
standard deviation, minimum, 
maximum and corelation 
between different axes. 

MLP, SVM, RF, simple 
logistic, logit boost 

6 (basic 
activities) 

Gupta and 
Dallas 
(2014) 

Accelerometer 126 6 sec with 50% 
overlap 

Spectral energy, spectral 
entropy, mean, variance, 
mean trend, windowed mean 
difference, variance trend, 
windowed variance 
difference, Detrended 
fluctuation analysis 
coefficients, X-2 energy 
uncorrelated (spectral), 
maximum difference 
acceleration 

Naïve Bayes and K-NN 6 (basic 
activities) 
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Table 2 Summary of some research articles based on traditional methods (continued) 

Ref. Sensors 
Sampling 
frequency 

(Hz) 

Segmentation 
(windowing) 

Extracted features Classifier 
No. of 

activities 

Kalantarian 
et al. (2015) 

Piezoelectric 
sensor and 

accelerometer 

20 20 samples (1 sec) 
with maximum 

overlap 

Harmonic mean, geometric 
mean, standard deviation, 
kurtosis, skewness, mean 
absolute deviation 

Naïve bayes 4 
(swallow, 
walking 
and head 

movement) 

Machado  
et al. (2015) 

Accelerometer 800 Minimum = 1,000 
samples 

Maximum = 4,000 
samples 

Statistical domain: kurtosis, 
skewness, mean, standard 
deviation, interquartile range, 
histogram, root mean square, 
median absolute deviation 
Temporal: zero crossing rate, 
pairwise correlation, 
autocorrelation 
Spectral: maximum 
frequency, median frequency, 
cepstral coefficient, power 
spectrum, mel-frequency 
cepstral coefficients, 
fundamental frequency, power 
bandwidth 

Clustering method: k-
means, affinity 
propagation, mean shift 
and spectral clustering 

7 (basic 
activities) 

Attal et al. 
(2015) 

Accelerometer, 
gyroscope and 
magnetometer 

25 25 samples (1 sec) 
with 80 % overlap 

Time domain: Mean, 
variance, median, interquartile 
range, skewness, kurtosis, 
root mean square, zero-
crossing peak to peak etc. 
Frequency domain: DC 
component in FFT spectrum, 
energy spectrum, entropy 
spectrum, sum of wavelets 
coefficients, square sum of 
wavelet coefficients and 
energy of wavelet 
coefficients. 
 

Supervised learning: K-
NN, Random Forest 
(RF), SVM 
 
Unsupervised learning: 
Gaussian Mixture 
Model (GMM), Hidden 
Markov Model (HMM) 

12 (basic 
activities) 

Shoaib et al. 
(2016) 

Accelerometer 
and gyroscope 
(smartphone) 

50 2 to 30 sec with no 
overlap 

Mean, standard deviation, 
minimum, maximum, semi 
quartile, sum of 10 FFT 
coefficients 

NB, K-NN, DT 13 (basic 
complex 
activities) 

Wang et al. 
(2016) 

Accelerometer 
and 

(smartphone) 

50 2.56 sec with 50% 
overlap 

Time domain: Mean, standard 
deviation, maximum, 
minimum, median absolute 
deviation, signal magnitude 
area, energy measures, signal 
entropy, interquartile range, 
autoregression coefficients 
etc. 
Frequency domain: maximum 
magnitude, weighted average 
of frequency components, 
skewness, kurtosis, energy, 
entropy etc. 

NB, K-NN 6 (basic 
activities) 

Chen and 
Shen (2017) 

Accelerometer, 
gyroscope and 
magnetometer 

20 1 sec with 50% 
overlap 

Mean, standard deviation, 
maximum, minimum, 
correlation, interquartile 
range, dynamic time warping 
distance, FFT coefficients, 
wavelet energy. 

K-NN, RF, SVM 5 (basic 
activities) 
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Table 2 Summary of some research articles based on traditional methods (continued) 

Ref. Sensors 
Sampling 
frequency 

(Hz) 

Segmentation 
(windowing) 

Extracted features Classifier 
No. of 

activities 

Lu et al. 
(2017) 

Accelerometer 
(smartphone) 

30 Predefined with 
75% overlap 

Mean, standard deviation, 
variance, skewness, kurtosis, 
correlation, signal magnitude 
area 

Molecular complex 
detection (MCODE) 
(unsupervised 
clustering mechanism) 

3 (basic 
activities) 

Hassan et al. 
(2018) 

Accelerometer 
and gyroscope 
(smartphone) 

50 2.56 sec with 50% 
overlap 

Mean, standard deviation, 
mean absolute deviation, 
maximum, minimum, 
frequency skewness, 
maximum, frequency, average 
entropy, signal magnitude 
area, interquartile range, 
autoregression coefficient, 
spectral energy 

Artificial Neural 
Network (ANN), SVM, 
Deep Belief Network 
(DBN) 

12 (basic 
activities) 

Table 3 Overview of advancement in human AR using deep learning 

Ref. Model Activities 
Number of 

subjects 
Sensor modality 

Performance 
evaluation 

Tong et al. (2022) Bi-GRU-Inception- Command actions of 
traffic police 

12 Wearable inertial 
sensor units 

Accuracy, 
precision, recall, F1 

score, 

Tang et al. (2022) Triplet cross dimension 
attention 

Walking, going 
downstairs, going 

upstairs, jumping and 
jogging 

10 Smartphone (iPhone 
7) 

F1 score 

Gupta (2021) Hybrid deep learning 
model CNN-GRU 

Eating pasta, eating a 
sandwich, folding clothes, 
brushing teeth, walking, 

standing, kicking, 
clapping etc. 

51 Smartphone Precision, F1 score, 
recall and overall 

accuracy 

Zhang et al. (2021) Spatiotemporal multi-
feature extraction with 

space and channel-based 
squeeze and excitation 
blocks (ScbSE-SMFE) 

Handclap, running, 
sitting, walking, waving, 
punching and slapping 

10 Smart wearable wrist 
band 

F1 score and 
accuracy 

Kim and Cho (2020) LSTM Construction worker’s 
activities 

3 Wearable motion 
sensors 

Accuracy 

Bi et al. (2020) OcalDAL (dynamic active 
learning framework) 

Walking forward, 
sleeping, walking 
upstairs, walking 
downstairs, etc. 

14 Wearable sensors Classification 
accuracy 

Gholamiangonabadi 
et al. (2020) 

CNN with Leave One 
Subject Out cross-

validation (LOSOCV) 

Sitting and relaxing, lying 
down, walking, etc. 

10 Wearable sensors Accuracy 

Gjoreski et al. 
(2020) 

Complex feature 
extraction and selection, 

methods, and deep  
multi-model Spectro-

temporal fusion. 

Locomotive activities 
(still, walk, run, bike, car, 

bus, train, subway) 

3 Smartphone sensors Accuracy 

Lawal and Bano 
(2020) 

Training of CNN with 
frequency domain images 

of time series data 

Climbing up, climbing 
down, jumping, running, 

walking 

15 Wearable sensor, 
accelerometer, and 

gyroscope 

F1 score, precision, 
recall 

Mukherjee (2020) EnsemConvNet  
(CNN-Net+ Encoded – 

Net + CNN-LSTM) 

Walking, Running, 
sitting, upstairs, 

downstairs 

36 Wearable sensor data Accuracy, 
precision, recall, 

F1-score 

 



12 U. Verma et al.  

Table 3 Overview of advancement in human AR using deep learning (continued) 

Ref. Model Activities 
Number of 

subjects 
Sensor modality 

Performance 
evaluation 

Zhou et al. (2020) LSTM and auto labelling 
scheme based on Deep Q 

Network 

Climbing down, climbing 
up, jumping, sitting, 
standing, cycling, 
walking, jogging 

30 Wearable sensors Precision, F1 score, 
Recall 

Uddin et al. (2019) Deep recurrent neural 
network (RNN) for 

behaviour recognition 
with body sensors 

Sitting, sitting down, 
standing, standing up, 

walking 

10 Wearable sensors 
(accelerometer, 
magnetometer, 

electrocardiography) 

Precision, F1 score, 
recall, F1 score, 

support 

Bianchi et al. (2019) CNN Walking, standing, sitting 
down, stay seated, 
standing up, etc. 

15 Wearable sensors 
(accelerometer, 

gyroscope, 
magnetometer) 

Accuracy 

Chen et al. (2019) Semis-supervised 
recurrent neural network 

Sitting, standing, walking, 
ascending stairs, 
descending stairs 

8 Wearable sensors Classification 
accuracy 

Gumaei et al. (2019) Hybrid deep learning 
model Simple recurrent 
unit (SRU) with Gated 
recurrent unit (GRU) 

Standing still, sitting and 
walking, lying down, 

walking, climbing, etc. 

10 Wearable sensors Accuracy, 
precision, recall, F1 

score. 

Kulchyk and Etemad 
(2019) 

CNN Sitting, sitting down, 
standing, standing up, 

walking 

4 Wearable 
accelerometer unit 

Accuracy, 
precision, recall, F1 

score 

Lv et al. (2019) Hybridisation of 
convolutional neural 

network and recurrent 
neural network 
(HconvRNN) 

Having dinner, doing 
exercise, queuing, 

shopping, watching 
movies. 

9 Wearable sensor 
(accelerometer and 

gyroscope) 

Recognition 
accuracy 

Mohamad et al. 
(2020) 

Conditional restricted 
Boltzmann machine 

(CRBMC) + Bayesian 
stream-based active 
learning (BSAL)+  

semi-supervised classifier 
(OSC) 

Stand, walk, lie, sit 3 Wearable sensors Average accuracy, 
average class 

accuracy 

Zhu et al. (2019b) Novel ensemble model of 
CNN 

Going upstairs, going 
downstairs, standing, 

running, walking, 
bicycling, swinging 

100 Smartphone sensor Classification 
accuracy 

Hossain et al. (2019) CNN Speaking, eating, head 
shaking, head nodding 

- Wearable sensors 
(earable) 

accuracy 

Youssef et al. (2020) K nearest neighbours – 
least square support vector 
machine (KNN-LS-SVM) 

Walking, jogging, sitting, 
standing, walk-up, walk-

down 

10 Wearable sensors 
(accelerometer) 

Recall, precision, 
F1 score 

Zhu et al. (2019a) Semi-supervised learning 
temporal ensembling of 
Deep Long Short-Term 

Memory (DLSTM) 

Walking, walking 
upstairs, walking down-
stairs, sitting, standing, 

lying down 

30 Wearable sensors Accuracy 

He et al. (2018) Recurrent attention 
learning 

Go upstairs, go 
downstairs, jumping and 

jogging 

10 Tri axial 
accelerometer 

(iPhone) 

Accuracy and 
efficiency 

Kim et al. (2018) Deep gesture algorithm, 
deep convolutional and 

recurrent neural network 

Arm gestures 10 Wearable sensors 
(accelerometer and 

gyroscope) 

Accuracy and F1 
score 

Li and Trocan 
(2019) 

Multi-layer sparse 
autoencoder for feature 
extraction and SoftMax 

for classification 

Sitting, standing, walking, 
running 

30 Smartphone sensors Recall, precision 
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Table 3 Overview of advancement in human AR using deep learning (continued) 

Ref. Model Activities 
Number of 

subjects 
Sensor modality 

Performance 
evaluation 

Xu et al. (2018) Combination of Inception 
Neural Network and 

Recurrent Neural Network 
(InnoHAR) 

Lie, sit, stand, run, 
cycling, vacuum cleaning, 
drive the car, play soccer 

etc. 

12 Wearable sensors F1 score 

Xi et al. (2018) Dilated convolutional 
neural network with novel 

recurrent model 

Walking, running, 
cycling, spinning, 

drinking etc. 

9 Wearable sensors Weighted F1 score, 
precision, recall. 

Uddin and Hassan 
(2019) 

Gaussian kernel-based 
PCA, Z score 

Normalisation and deep 
convolutional neural 

network 

jump front and back, 
running, jogging, cycling, 

knees bending, frontal 
evaluation of arms etc. 

10 Wearable sensors 
(accelerometer, 

gyroscope, 
magnetometer, ECG) 

Average accuracy 

Hassan et al. (2018) Kernel principal 
component analysis 

(KPCA) and Deep Belief 
Network (DBN 

Standing, sitting, walking, 
talking 

30 Smartphone inertial 
sensors 

(accelerometer and 
gyroscope) 

Mean recognition 
rate 

Münzner et al. 
(2017) 

CNN-base sensor fusion 
techniques 

Walking, stair climbing, 
cutting vegetables, 

writing a latter 

31 Wearable sensor 
nodes(tri axial 

accelerometer and 
gyroscope) 

F1 score 

Sheng et al. (2016) CNN 13 short time activities 
like stand, sit, lay, walk 
forward, walk left circle, 

walk right circle etc. 

20 Wearable sensors (tri 
axial accelerometer 

and bi axial 
gyroscope) 

Accuracy and time 

Chen and Xue 
(2015) 

CNN Jumping, walking 
upstairs, walking quickly, 

falling running, step 
walking etc.. 

100 Smartphone (tri-axial 
accelerometer) 

Accuracy 

 
7 Deep learning approaches for AR 

Deep learning, another branch of machine learning, has 
been widely accepted due to its outstanding performance in 
various fields like natural language processing, computer 
vision, face recognition, human AR, etc. The familiar deep 
learning algorithms for AR are long short-term memory 
(LSTM) (Barut et al., 2020; Boultache et al., 2022), 
convolutional neural networks (CNNs) (Tang et al., 2020) 
and recurrent neural networks (RNNs) (Javed et al., 2021). 
The multi-tasking deep model (AROMA) was designed for 
recognition of basic and CA in Peng et al. (2018) where 
CNN was used for complex and LSTM for BA. Smartphone 
based AR was designed where various features were 
extracted and processed with KPCA and LDA for AR with 
deep belief network (DBN) in Mehedi et al. (2018). It is 
difficult to acquire a strictly labelled data due to human 
interventions in data labelling therefore most of the acquired 
data are weakly labelled. An attention mechanism based 
CNN architecture was proposed to classify the weakly 
labelled data for AR (Wang et al., 2019b). The deep 
learning methods are well known for their capability of 
temporal and spatial feature extraction but these methods 
are not suitable for statistical features. A framework known 
as distribution-embedded neural network was proposed for 
extraction of statistical, temporal and spatial features in 
Qian et al. (2019). A lot of computation is required for deep 
learning models therefore it is difficult to use them for real 

time application through edge devices. A low weight and 
computationally efficient deep learning model was proposed 
in Agarwal and Alam (2019) for the deployment in edge 
devices It is seen that each feature layer in automatic feature 
extraction through deep learning methods use a same kernel 
size for receptive field but adaptable kernel size is possible 
according to data structure. The attention mechanism for 
selection of kernel size to obtain a different receptive field 
was proposed in Gao et al. (2021a) for AR The deep 
learning models based on CNN follows the short term 
temporal dependencies but to retain the long term temporal 
dependencies are also required for obtaining the more 
relevant deep features therefore some hybrid approaches by 
combining CNN and RNN have been proposed  
in Abbaspour et al. (2020) such as multibranch  
CNN-Bidirectional LSTM (BiLSTM), CNN-LSTM,  
CNN-Gated Recurrent Unit (GRU), CNN-Bidirectional 
GRU (BiGRU).The various other approaches and their 
descriptions are given in Table 3. 

8 Discussion 

A good amount of dataset with good quality is required for 
an accurate assessment of physical or daily living activities 
and this review indicates this. It means that the data-taking 
methods should be well defined and must have some 
credibility. Pre-processing of the available data is seen as 
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removing unnecessary information for a particular 
application to enhance the assessment’s accuracy. The 
selection of the feature extraction procedure is the most 
responsible step for the classification accuracy of human 
activities. Different classifiers provide different accuracy for 
different features, some are good for a particular activity, 
but others one is not. So, finding the corresponding 
classifier for the relevant features is required. The number 
of sensors and sensor locations are also important aspects of 
AR. A large number of sensor placements can improve the 
accuracy but it is difficult to wear while performing 
different activities. 

Three-dimensional accelerometers, gyroscopes, and 
magnetometers can provide more information about 
physical activities than their one-dimensional counterparts. 
One or two sensor placements are sufficient for qualitative 
assessment if their placement location and feature extraction 
method are effective such as the hip position of the sensor 
giving good results. The revolution in machine learning 
such as deep learning algorithms can predict more accurate 
results with the low amount of information by which 
energy-efficient modelling could be done. Physical activity 
is shown as the classification problem in most cases. 

9 Conclusions 

It is observed that the accurate assessment of physical 
activity is required for various applications such as 
assistance in medical, intrusion detection, behavioural 
recognition, security issues, etc. This is also observed true 
that till now, a good amount of research has been conducted 
but there are also some areas where a lot of work is still 
required for improvement such as modifications in methods 
for feature extraction and searching the best classifier for 
corresponding features. Newly-developed feature extraction 
methods are considered as an area where researchers can 
add their efforts because classification accuracy largely 
depends on it. Publicly available datasets have various 
information in the form of rows and columns but it also 
consists of information that is not useful for a desired 
application. Finding undesirable information and removing 
that in pre-processing step can affect the accuracy of the 
assessment. So, in this regard, a new pre-processing method 
or searching redundant information and removal of it could 
be able to evaluate a more accurate assessment. How we can 
get an accurate assessment with less information on the 
input side would be a decisive factor regarding energy-
efficient modelling, deep learning algorithms open the gate 
for it. 

To set up an own dataset is a complex task and requires 
various types of resources such as the population of 
different age groups, keen observation, protocol set up, 
technical assistance, etc. there is a good contribution of 
universities and research projects in the development of 
some standard and quality datasets, and their availability in 
public domain gives more help in research for physical 
activity assessment. It is also noted that a smaller number of 
sensor placements in the subject’s body gives more relevant 

information due to the comfort in movement. But complex 
nature of activities could not be detected with a smaller 
number of sensors. So, the quantity of sensors depends on 
selected activities. The most of the research in AR have 
been carried out by taking the publicly available dataset 
such as SBHAR (Chen et al., 2020b), UniMiB SHAR 
(Micucci et al., 2017), REALDISP (Aljarrah and Ali, 2021), 
USC-HAD (Zhang and Sawchuk, 2012b), UCI-HAR (Tang 
et al., 2020) OPPORTUNITY (Tang et al., 2020), PAMAP2 
(Khan et al., 2016), WISDM (Ignatov, 2018), mHealth 
(Kumar and Suresh, 2022), FSP (Zdravevski et al., 2017), 
DaLiAc (Zdravevski et al., 2017) and so on. 
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