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Abstract: Hybrid electric vehicles (HEVs) are considered as one of the 
prominent solutions in reducing vehicular emission. Batteries and internal 
combustion engines (ICE) are the important components of a HEV, which acts 
as primary and secondary power source respectively. They simplify the 
refuelling process by minimising fuel consumption and by reducing virulent 
emissions. In this research, a series-parallel drivetrain – HEV model is 
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proposed for investigating the performance and energy optimisation of the 
HEVs. The model is trained to operate at near optimum efficiency for 
minimising the energy loss. A deep reinforcement learning and fuzzy logic 
controller based energy management approach is proposed to optimise the 
energy consumption in HEVs. Results show that the energy management 
system (EMS) of the model is controlled effectively by the deep reinforcement 
learning (DRL) algorithm. Effective speed control is achieved by fine tuning 
the parameters using a fuzzy based PID controller which can be validated from 
the simulation results. 

Keywords: HEVs; hybrid electric vehicles; series-parallel drivetrain; EMSs; 
energy management systems; DRL; deep reinforcement learning; fuzzy control 
logic; PID controllers; speed control. 

Reference to this paper should be made as follows: Pukkunnen, E.B.,  
Joseph, N.M., Jos, B.M., Joy, M.C. and Eldhose, K.A. (2023) ‘Performance 
investigation and energy optimisation in hybrid electric vehicle model using 
reinforcement learning and fuzzy controller’, Int. J. Vehicle Performance,  
Vol. 9, No. 1, pp.73–90. 

Biographical notes: Emmanuel Babu Pukkunnen completed his BTech 
(Electrical and Electronics Engineering) in 2003 from the Mahatma Gandhi 
University, Kerala, India. He has done his MTech (Industrial Power and 
Automation) from the National Institute of Technology Calicut in 2016. 
Currently, he is a Research Scholar at the Department of Electrical Engineering 
at the National Institute of Technology Calicut. He is also a Faculty at the 
Department of Electrical and Electronics Engineering, Mar Athanasius College 
of Engineering, Kothamangalam, Kerala, India. 

Neena M. Joseph completed her BTech (Civil Engineering) in 2007 from the 
University of Calicut, Kerala, India. She has done her MTech (Traffic and 
Transportation Planning) from the National Institute of Technology Calicut in 
2011. Currently, she is a Research Scholar at the Centre for Transportation 
Research at the National Institute of Technology Calicut. She is also a Faculty 
in the Department of Civil Engineering at Viswajyothi College of Engineering 
and Technology, Ernakulam, Kerala, India. 

Bos Mathew Jos completed his BTech (Electrical and Electronics Engineering) 
from the Mahatma Gandhi University, Kerala, India. He has done his MTech 
and PhD from the National Institute of Technology Triruchirapalli. Currently, 
he is a Faculty in the Department of Electrical and Electronics Engineering at 
Mar Athanasius College of Engineering, Kothamangalam, Kerala, India. 

Minu C. Joy completed her BTech (Civil Engineering) in 2008 from Mahatma 
Gandhi University, Kerala, India. She has done her MTech from the University 
of Calicut in 2012. Currently, she is a Faculty in the Department of  
Civil Engineering at Viswajyothi College of Engineering and Technology, 
Ernakulam, Kerala, India. 

K.A. Eldhose completed his BTech (Electrical and Electronics Engineering) in 
2002 from the Mahatma Gandhi University, Kerala, India. He has done his 
MTech from the University of Calicut, Kerala, India. Currently, he is a Faculty 
in the Department of Electrical and Electronics Engineering at Mar Athanasius 
College of Engineering, Kothamangalam, Kerala, India. 

 



   

 

   

   
 

   

   

 

   

    Performance investigation and energy optimisation 75    
 

    
 

   

   
 

   

   

 

   

       
 

1 Introduction 

Hybrid electric vehicles (HEVs) are regarded as an optimistic substitute for conventional 
fuel based vehicles, because of their effectiveness in reducing vehicular pollution and 
noise. The batteries and internal combustion engine (ICE) in HEV’s play an important 
role in reducing vehicular emission thereby contributing towards a pollution free 
ecosystem. Battery is one of the significant components in HEV’s, whose performance is 
evaluated with respect to different circuit parameters such as open circuit voltage (OCV), 
state of charge (SOC), battery resistance and power capacity. These parameters are highly 
sensitive towards temperature, battery ageing and charging/discharging cycle of the 
battery (Panday and Bansal, 2015). In HEV’s, the battery and ICE act as primary and 
secondary power sources respectively. They both increase the driving range of the 
vehicle and ease the mechanism of refuelling with minimised fuel consumption and 
reduced virulent emissions. HEVs store the electrical power in batteries which 
significantly reduces the energy demand. In this way, HEVs reduce energy requirement 
by replacing fossil fuel consumption with electrical energy consumption (Panday et al., 
2016). The energy management unit in HEV’s uses a rechargeable energy storage system 
(RESS) which acts as an energy buffer and can be employed for regenerative braking. 
RESS stores the additional energy which is not required by the system at that particular 
point of time. For example, in most of the times, the power delivered by ICE is different 
from the power required by the load and in such cases, RESS provides the flexibility of 
utilising only the required amount of power while utilising the unused power for charging 
the battery (Onori et al., 2016). RESS in HEV’s offers the feasibility of operating the 
engine in favourable conditions where there is less emissions. Also, there is a possibility 
of terminating the engine operation when it is not required (i.e., during low speed 
conditions) and the engine can be downsized by storing the peak power using RESS (Sun 
et al., 2015). Though HEV’s are efficient in reducing fuel consumption, they suffer from 
certain drawbacks such as low density and low efficiency. Also the cost of the refuelling 
infrastructure is quite high, which makes it expensive for small scale applications 
(Sulaiman et al., 2018). Most of the researchers have focussed on developing an efficient 
energy management system (EMS) for overcoming the limitations of the conventional 
HEV’s. Advanced EMS models include energy minimisation techniques and application 
of machine learning and deep learning approaches for increasing the flexibility of the 
EMS. These approaches are gaining prominence because of their reduced computational 
complexities and no requirement of pre-defined knowledge (Zhou et al., 2019). There are 
three main categories for EMS which are rule based EMS, optimisation based EMS and 
learning based EMS. Rule based EMS are mainly dependent on the outcome of the 
detailed experimental analysis without having the preliminary knowledge about the 
conditions of driving. Fuzzy based rules are applied for controlling these EMSs. 
Optimisation based EMS are used when the control strategies of the HEVs are anticipated 
on subsequent driving scenarios like dynamic programming (DP) (Ansarey et al., 2014; 
Vagg et al., 2016), sequential quadratic programming (SQP), genetic algorithms (GA) 
(Chen et al., 2014), the Pontryagin least guideline (PMP) (Xie et al., 2017). These rules 
decide the desired power split between the engine and the motor for a specific driving 
cycle. Learning – based EMS learn from the predefined information or utilise the past 
driving information for web based learning or application (Tian et al., 2018). Various 
simulation models have been proposed for HEV’s based on the prerequisites of the 
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systems. Such as series HEVs, parallel HEV’s and series parallel HEVs (Meradji et al., 
2016). 

In this research, the HEV model is developed using a series parallel drivetrain with 
reinforcement learning and fuzzy logic controllers for investigating the performance and 
energy optimisation of the HEVs. 

The main contributions of this paper can be summarised as follows: 

• This paper presents a novel deep reinforcement learning-based framework for energy 
management in a series parallel drivetrain-HEV model. 

• A DRL based deep Q-learning algorithm is employed for achieving energy 
optimisation in the HEV 

• A fuzzy based PI controller is designed for tuning the system parameters. 

• The performance of the HEV model in terms of key equations, parameters, and 
assumptions. 

The rest of the paper is structured as follows: Section 2 discusses the review of existing 
literary works related to energy management in electric vehicles. Section 3 provides a 
brief description of the proposed methodology for energy management which includes 
the design of HEV, control of series-parallel drivetrain and implementation of fuzzy logic 
controllers. Section 4 discusses the simulation results and Section 5 concludes the paper 
with prominent research observations and future scope. 

2 Literature review 

Tang et al. (2017) Proposes a novel approach of a simplified torsional vibration dynamic 
model for analysing the functionalities of the torsional vibration of a compound planetary 
hybrid propulsion model. The study evaluates the prominent characteristics such as 
frequency and vibration property. This model can be employed for determining the  
low-frequency vibrational attributes of the series parallel drivetrain. It also evaluates the 
controlling mechanism of the hybrid powertrain with respect to engine operation. Wang 
et al. (2015) analysed a four wheel driven series parallel drivetrain model for heavy duty 
applications. The model incorporates a rule-based EMS and the performance of the 
model was evaluated by comparing the model with a rear-wheel-driven hybrid powertrain 
and the operational parameters are optimised. The proposed model was integrated with a 
transit bus and the functionalities of the bus were evaluated. Unlike conventional coaxial 
power-split HEV’s, the energy consumption was minimised using the series parallel 
drivetrain when evaluated for normal road conditions. SPHEV has great potential in 
minimising energy consumption. However, due to certain uncertainties such as multi 
power resources and varying driving constraints, it is challenging to develop an optimal 
EMS. Wang et al. (2018) proposed a novel particle swarm optimisation (PSO) based 
nonlinear model predictive control (NMPC) technique for EMS with an objective of 
achieving superior fuel economy. Initially, the framework of NMPC was developed and a 
transformed PSO was adopted for achieving desired optimisation. The approach uses a 
two-step optimisation process for achieving fast computation. The performance of the 
proposed approach was validated by performing simulation analysis based on the 
aggregated information collected from a driving cycle and a real bus. The efficacy of the 
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proposed framework was evaluated by determining the rate of fuel consumption by 
SPHEV. It was observed that the energy consumption was significantly minimised by 
more than 10%. Wu et al. (2019) proposed application of deep learning algorithms for 
strengthening the performance of the EMS in electric vehicles. The study adopted a deep 
reinforcement learning algorithm for a series-parallel electric bus for assigning an 
appropriate power split of the electric bus. The deep RL based EMS was trained using 
different samples of driving cycles and the performance of the proposed approach was 
validated by comparing it with conventional RL methods. From results, it was observed 
that the deep RL-EMS showed significant enhancement in achieving optimised energy 
consumption compared to classical RL algorithms. Also, the Deep RL-EMS achieved 
efficient EMS strategies and explored the adaption of real time traffic data within 
vehicular EMS through enhanced algorithms. Peng et al. (2017) proposed a rule-based 
EMS for enhancing the performance of the parallel drivetrain, which is calibrated using 
dynamic programming (DP). The proposed approach applied DP for locating the optimal 
extensions for the ICE in parallel HEVs. The study introduces a recalibration technique 
for strengthening HEVs and the efficacy of the rule-based EMS was validated by 
evaluating DP algorithm. 

3 Research methodology 

The preliminary objective of this research is to design and develop a hybrid electric 
vehicle model using reinforcement learning and fuzzy logic controllers for performance 
investigation and energy optimisation. The HEV model is developed using a series 
parallel drive train model which operates at near optimum efficiency to minimise the 
energy loss. The model is incorporated with the DRL algorithm for control and energy 
management of the HEV model. This study presents an enhanced EMS procedure based 
on deep reinforcement learning (DRL) algorithm. The DRL technique integrates Q 
learning and DRL algorithm to form an effective learning algorithm which can obtain 
action directly from the states, which is used to improve energy efficiency. 

3.1 Design of hybrid electric vehicle model 

A series parallel drivetrain based HEV is used for designing a HEV. The model employs 
a generator, an ICE), a device for storing the energy, coupling components for achieving 
mechanical coupling, a torque coupler and a traction motor. This model is flexible for 
operation and is feasible for optimising the torque-speed region. The series parallel 
drivetrain model is shown in Figure 1. 

In the series parallel drive train model, the vehicle is driven by both ICE engine and 
motor. By combining the series and parallel designs, the engine can drive both the wheels 
directly (as in the parallel drivetrain), and can be disconnected effectively such that only 
one electrical device (either electric motor or ICE) is operated per cycle while the other is 
non-operative and continue to be in discharging state. The operating motor or ICE 
provides power (as in the series drivetrain) and the non-operative motor or ICE is 
responsible for charging the battery. However, there is a separate generator that charges 
the battery during regenerative braking. During braking, the motor behaves like a 
generator and the lost kinetic energy is restored in the battery. During driving, if the 
battery needs to be charged, ICE drives the generator to recharge the battery. When the 
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vehicle stops, the battery can be still charged by the ICE via the generator. ICE supplies 
the steady state power and the motor is designed to achieve the stability by providing 
required initial acceleration during low speed conditions. Mechanical coupling is 
incorporated with torque and speed coupling. In the drivetrain used in this research, an 
electric generator is connected to the sun gear and ICE is connected to the planet carrier 
for speed coupling, whereas, the ring gear is connected to the wheels with the help of a 
fixed gear for torque coupling. The wheels are also connected to a traction motor through 
fixed gear for establishing coupling between the traction motor and output torque of the 
ring gear (Borthakur and Subramanian, 2018). 

Figure 1 Series parallel drive train model (see online version for colours) 

 

The maximum power generated by the ICE for a constant speed of vmax is presented as: 

2
(max) max max

1 1
2eng r d

t

P Mgf C Av vρ
η

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1) 

where Peng(max) is the maximum energy generated by the ICE, ηt represents transmission 
efficiency, M states the vehicle mass, fr defines the coefficient of rolling resistance, Cd 
states the drag coefficient, vmax is the maximum voltage across ICE, ρ is air density whose 
value is 1.25 kg/m3, and A defines the frontal area. Pm is the power rating of the electric 
motor, which is given as: 

2 2( )
2m f b

a t

MP v v
t

γ
η

= +  (2) 

Where vf is defined as the rated speed of the vehicle (km/h) and vb states the speed of the 
vehicle with respect to the speed of the motor base and γ is defined as the rotational 
inertia factor, M is the vehicle mass and ta is the acceleration time (Nandakumar and 
Subramanian, 2015). The rotational speed of the ICE (carrier), generator (sun gear) and 
ring gear is given as: 

(1 ) eng
r eng

k
k k

ω
ω ω+= −  (3) 

where ωr, ωgen, ωeng are the rotational speeds of ring gear, generator, and engine 
respectively, k is defined as the planetary gear ratio, stated as the ratio of the radius of the 
ring, Rr, to the radius of the sun, Rs. 
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where ωW is defined as the wheel rotational speed, v is defined as the longitudinal speed 
of the vehicle and s is defined as the slip ratio. The torques which are shifted from the 
engine (Teng) to the ring gear (Tr) and to the generator (Tgen) are defined as shown in the 
below equations. 

1r eng
kT T

k
=

+
 (5) 

1
1gen engT T

k
=

+
 (6) 

The shaft of the engine and the ring gear are connected through a final reduction gear 
with a gear ratio, ig. Now, the overall wheel drive torque is defined using equation (7) 

1 1( )
1wheels m r m eng

g t g t

kT T T T T
i i kη η

⎛ ⎞= + = +⎜ ⎟+⎝ ⎠
 (7) 

The specification of the series parallel drivetrain are tabulated in Table 1. 

Table 1 Specifications of the series parallel drivetrain 

Engine Max.power (kW) 57 
 Max.speed (rpm) 6000 
Generator Torque output (Nm) 80 
 Max.speed (rpm) 8000 
 Efficiency (%) 87 
Traction motor Torque output (Nm) at speed (rpm) 585 at 2500 
 Max.power (kW) 123 
 Max.speed (rpm) 12000 
 Efficiency (%) 91 
Batteries Battery cells 120 
 Initial capacity (Ah) 70 
 Power (kW) 125 
 Energy output (kWh) 88 
Planetary gear ratio (k)  1.3 
Final drive ratio  2.16 

3.2 Control of series parallel drivetrain 

There are different operation modes for controlling the operation of the drivetrain such as 
hybrid traction mode, regenerative braking etc. This study illustrates the application of a 
deep reinforcement learning algorithm for controlling the operation of the drivetrain and 
for effectively handling the EMSs. Figure 2 show the framework of DRL based EMS of 
an HEV. 
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Figure 2 Framework of DRL based EMS of an HEV 

 

In this study, the DRL-based EMS is proficient with an appropriate arrangement of 
system components which are dependent on input data with no prediction or predefined 
rules. The proposed DRL method is integrated with Q learning and DRL to develop an 
effective learning algorithm for enhancing energy efficiency. Reinforcement learning is 
used for analysing the system parameters and for generating the enable signal for 
generator, motor and ICE engine. RL takes input such as SOC of battery, vehicle speed, 
reference speed and IC engine RPM. In a series parallel drivetrain, the electric motor 
supplies the power to the vehicle and during high load conditions, the IC engine stabilises 
the system by supplying motor power to the vehicle. During braking, the IC engine 
powers the generator and the enable signal from the RL is given as shown in Figure 3. 
The reinforcement learning manager is used to create and train agents. These agents are 
generated using neural networks and the system is controlled by Q Learning. The reward 
observations are analysed from the simulink model. 

The simulink model of the HEV is controlled by DRL is presented in Figure 3. 

Figure 3 Simulink model of HEV controlled by DRL (see online version for colours) 

 

The reinforcement learning manager is given in Figure 4. 
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Figure 4 Reinforcement learning manager (see online version for colours) 

 

The DRL-based EMS follows following steps: 

• System state: The control mechanism of the vehicle is determined by its state. The 
required torque (Tdem) and the battery SOC are used for determining the state of the 
system which constitute a 2D state space i.e., 

( ) ( ( ), ( )) .T
dems t T t SOC t=  

• Control action: The prominent issue in the HEV-EMS is deciding the required 
torque-split ratio between battery and ICE. In this study, the ICE’s output torque is 
considered as the control action, defined as A(t) = Te(t); t is defined as the time step 
index. 

• Immediate reward: This is significant to the DRL since it prominently affects the 
functionalities of the DRL algorithm. The system components of the DRL will try to 
maximise the reward by considering the optimal action of every step. Hence the 
immediate reward is constituted based on the optimisation goal. The prominent 
intent of the HEV-EMS is to enhance the energy efficiency by minimising the fuel 
consumption without affecting the vehicle stability and state of battery. Based on this 
objective, the reciprocated value of the power utilisation by ICE at every time step is 
considered as the immediate reward. Additionally, a penalty value is included for 
penalising the steps when the SOC crosses the defined threshold value. Immediate 
reward is determined using the below mentioned equations (Hu et al., 2018): 
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where the immediate award is defined by a
ssr , given when the state of the vehicle shifts 

from s to s’ by taking action a. CICE is defined as the instantaneous value of the fuel 
consumed by ICE and C is defined as the numerical penalty. 

ICECMin  is defined as the 

minimum nonzero value of the fuel consumed by ICE. 

• DRL algorithm: In this study, the DRL based EMS is defined in the algorithm given 
below. The two loops (outer loop and inner loop) control the EMS. The number of 
training states are controlled by the outer loop and the control of EMS within one 
training state is performed by the inner loop. 

Algorithm 1 Deep Q-Learning with experience replay 

Initialization: 
Step 1: replay memory K to capacity L 
Step 2: action value component Q with random weights θ 
Step 3:  target action value component Q with random weights θ- = θ
for episode = 1, N do 
            Environment reset: so=(SOCInitial , To) 
fort=1, T, do 
           Selecting a random action at for a probability of ε 
else 
Select at = maxQ(st,a;θ) 
Parameter functioning: 

                Selecting action at and observing the reward rt 
Set: 
st+1 = (SOCt+1, Tt+1) 
storing (st, at, rt, st+1) in memory K 
                Sample random smaller group of (st, at, rt, st+1) from K 
if: 
terminal sj+1: set xj=rj 
else 
setsetxj=rj+ ⋎maxQ(s j+1,aj+1;θ-) 
performing a gradient descent step on (xj-Q(sj,aj;θ))2 
every C steps reset Q = Q 
end for 
end for  
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3.3 Fuzzy based PID controller 

Fuzzy logic controllers with a self-tuning PID controller are used for parameter tuning of 
the HEV. Fuzzy-based PID controllers increase stability and provide efficient speed 
control and smooth torque. 

• PID controller: The simulink model of the vehicle with PID controller is shown in 
Figure 5. 

Figure 5 Simulink model of the plant with PID controller 

SV  PID Plant 
transfer 

 
PID Controller                                Plant

Scope  

The transfer function of the PID controller is defined as: 

1

1

1( ) 1P d P d
KC s K K S K T s
S T s

⎛ ⎞
= + + = + +⎜ ⎟

⎝ ⎠
 (9) 

where KP Ki and Kd are defined as the proportional, integral and derivative gain of the 
controller, and Ti and Td are the integral time and derivative time respectively. 

• Fuzzy logic control 

FLC is applied for the series parallel drivetrain based HEV, for maintaining constant 
speed irrespective of uncertainties such as variation in wind resistance and vehicle 
acceleration. The block diagram of the HEV with FLC and the basic structure of FLC is 
shown in Figures 6 and 7 respectively. 

Figure 6 Block diagram of the HEV with FLC 

 

Figure 7 Basic structure of FLC 
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The design parameters of the fuzzy controller are selected based on the controller’s input 
and output. Four main parameters such as base, inference engine, fuzzification and 
defuzzification are used for designing FLC. 

The error (e) is selected as input to the FLC, given as (Yadav et al., 2011): 

( )e kT r y= −  (10) 

The change in error (ce) is given as: 

( ) ( ( ) ( )) /ce kT e kT e kT T T= − −  (11) 

The output torque of ICE is considered as the output variable. 
The basic fuzzy rules for FLC are tabulated in Table 2. 

Table 2 Fuzzy rule base 

ce P Z N 
P PB P Z 
Z P Z N 
N Z N NB 

where Z represents ‘zero’, P represents ‘positive’ and PB represents ‘positive big’. The 
error difference is the change of error between one instance to another. If the error is 
positive then the speed of the vehicle is lesser than the set value and the controller should 
slightly increase the acceleration for increasing the speed. If the present error and error 
change are positive, then the speed of the vehicle is too slow and it shifts to decelerating 
mode and in such cases, the controller should increase the acceleration to maintain 
desired speed. These are known as fuzzy rules. For controlling the ICE using FLC, the 
RPM of the engine is compared to the IC engine demand which is further compared with 
IC enable signal from DRL. This generates the IC engine torque demand. Similarly, for 
controlling the motor, the RPM of the motor is compared with the motor engine demand 
and it is compared with motor enable signal from DRL. This generates the motor torque 
demand. The Fuzzy tined signals for ICE and motor are given in Figures 10 and 12 
respectively. 

4 Results and discussion 

The fuzzy logic controller is used to tune the enable signal from the DRL. The fuzzy 
tuned signal is given in Figure 8. 

The parameter tuning for both, engine and motor unit is performed using a fuzzy 
based PID controller. The simulink model of the fuzzy-based controller for controlling 
the speed of ICE and the fuzzy tuned signal for ICE is illustrated in Figures 9 and 10 
respectively. 

The simulation model of the engine control unit is shown in Figure 9. 
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Figure 8 Enable signal from DRL algorithm (see online version for colours) 

 

Figure 9 Engine control unit 

 

The fuzzy tuned signal generated from engine control unit is given in Figure 10. 

Figure 10 Before and after signals of fuzzy based PID controller for engine (see online version  
for colours) 
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In practical conditions, real-time systems deviate from the reference path due to driving 
uncertainties. This unexpected deviation affects the output of the engine and in such 
cases, the controller must be able to sustain the disturbance created in the engine. As 
observed from Figure 10, the fuzzy logic PD overshoot occurs and settling time of both 
FLC tuned PID and before PID are nearly the same. This shows that the response of the 
system is unaffected due to disturbances. 

The simulink model of the fuzzy-based controller for controlling the speed of motor 
and the fuzzy tuned signal for motor is illustrated in Figures 11 and 12 respectively. 

Figure 11 Motor control unit 

 

The fuzzy tuned signal generated from engine control unit is given in Figure 12. 

Figure 12 Before and after signals of fuzzy based PID controller for motor (see online version  
for colours) 

 

The fuzzy tuned signal for generator is given in Figure 13. 
Figures 12 and 13 show the response of the motor and generator respectively with and 

without FLC tuned signals. As observed from these figures, the response of the motor and 
generator improves with the tuning of the PID controller using FLC. The vehicle path is 
monitored and controlled by using Reinforcement learning methods. It is used for 
controlling the series parallel drivetrain and for minimising the energy consumption. The 
reference vehicle path and vehicle speed is shown in Figures 14 and 15 respectively. 
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Figure 13 Before and after signals of fuzzy based PID controller for generator (see online version 
for colours) 

 

Figure 14 Reference vehicle path (see online version for colours) 

 

Figure 15 Vehicle speed (see online version for colours) 
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From the graph shown in Figures 14 and 15, it can be observed that the reinforcement 
learning method efficiently controls the speed of series parallel drivetrain and reduces the 
energy consumption of the drivetrain. The fuel economy for the HEV is shown in  
Figure 16. 

Figure 16 Fuel economy 

 

Figure 16 presents the fuel economy of the DRL based HEV model, the total fuel used 
was 0.04741 (L) for an average of 1.817 l per 100 km with a mileage of 55.04 km/L. 

5 Conclusion 

The preliminary objective of the research is to investigate the performance of an EMS in 
HEVs. Considering the influence of EMS in determining vehicle efficiency, an enhanced 
vehicular transition strategy based on a deep reinforcement learning-based framework 
was developed and applied for a series parallel drivetrain-HEV model. A DRL based 
deep Q-learning algorithm was developed for achieving energy optimisation in the HEV 
whose parameters were fine-tuned using a fuzzy based PID controller. The performance 
of the HEV model was validated from the simulation results and the prominent 
observations are as follows: 

• The series parallel drivetrain offers the flexibility of selecting the mode of operation 
for the vehicle i.e., the vehicle can operate either with motor or ICE at once and the 
energy of the motor or ICE (which is shut down) will be used for charging the 
batteries. This significantly enhances the energy efficiency in HEVs. 

• The vehicle path is monitored and controlled by the DRL algorithm, which 
effectively controls the series parallel drivetrain and minimises the energy 
consumption. 

• Fuzzy based PID controls provide effective speed control for both motor and engine 
by fine tuning the motor and engine parameters. 

From the simulation results, the effectiveness of the speed control mechanism can be 
observed. Following the vehicular reference path, the speed consistency was not much 
deferred as observed from Figure 15. 
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