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Abstract: The Unmanned Aerial Vehicle’s (UAV) attitude control is crucial to 
the success of the mission. On the basis of this, the paper suggests a paradigm 
for autonomous early warning of improper UAV attitude based on MEMS 
sensors. To obtain early warning of anomalous UAV attitude, the model solves 
UAV attitude using the quaternion approach and employs a fading Kalman 
filter to correct for MEMS gyroscope inaccuracy. The simulation test 
demonstrates that in the static state, the errors of the drone’s pitch angle and 
roll angle are within 0.2°, and the heading angle error is about 0.5. In the high 
manoeuvring state, the errors of the UAV’s pitch angle and roll angle are all 
within 0.5, and the mean value of the heading angle error is also controlled 
within 2°. The experiment achieves high-precision automated warning of 
aberrant attitude by filtering the fading Kalman filter to correct the random 
error of the UAV gyroscope. It also increases the precision with which human 
motion is measured. The suggested approach promotes the growth of the  
UAV sector. 

Keywords: MEMS sensor; unmanned aerial vehicle; abnormal attitude; fading 
Kalman filter; gyro error; quaternion; Allan variance; early warning. 
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1 Introduction 

The micro-electro-mechanical and micro-electronic technology has been developing 
continuously, and the Micro-Electro-Mechanical System (MEMS) is one of the 
crystallisation products of this technology (Li et al., 2019). MEMS is composed of the 
latest modern information technology and micro-processing technology, such as ultra-
high-precision machining technology and micro-processing technology of semiconductor 
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integrated circuits. In the field of micro-engineering, micro-stereo lithography has 
become a promising manufacturing process. The ladder effect on the side surface of 3D 
micro-structures has been reduced using a variety of technologies, and methods relevant 
to different kinds of microstructures have been developed (Bhole, 2022). The outcomes 
of releasing microstructure without static friction may be obtained by using sublimation 
drying and release technology to the static friction effect in the MEMS post-treatment 
process. This creates a novel method for the post-treatment of microarray structure 
(Bhole and Kale, 2022). The internal structure of MEMS is generally micron or even 
nanometre scale, and it is an independent intelligent system. In practical applications, 
MEMS has many advantages such as small size, low cost, fast response, easy integration 
and high intelligence, which occupies an important position in the current research field 
of inertial technology (Stepanovsky, 2019). The three accuracy indications for MEMS 
inertial sensors – high, medium and low – are based on measurement accuracy standards 
and are utilised extensively in a variety of industries. In the field of unmanned aerial 
vehicles, MEMS inertial sensors can be used for positioning, detection and analysis of 
unmanned aerial vehicles, but the current accuracy of MEMS has not yet reached the 
index requirements of high-precision navigation systems. Without correct and timely 
judgments, it may lead to UAV accidents (Ye et al., 2019). In order to make the UAV 
have more lasting characteristics during operation, the UAV needs to detect its own 
status. To increase the precision of UAV attitude measurement and accomplish the 
impact of automated warning of UAV attitude abnormal condition, the study employs 
fading Kalman filter to correct the random error of MEMS gyroscope. The essence of the 
proposed method is to use the sensing accuracy of MEMS to detect the attitude of UAV. 
The sensor can assess the UAV’s attitude angle, establish its coordinate system and 
provide early warning based on the magnitude of the UAV angle. It is challenging for the 
UAV attitude anomaly early warning system to employ traditional techniques for early 
warning due to numerous random faults in the inertial sensors. By improving the 
detection accuracy of the sensor, the research innovates from the early warning system to 
the prediction of UAV attitude, thus realising the effective early warning of UAV attitude 
anomalies. The overall structure of the article is shown in Figure 1. 

Figure 1 Overall structure of the article 
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The theoretical contribution of this study is to establish different coordinate systems of 
UAV, and calculate the attitude angle of UAV through coordinate system transformation. 
The impact of the UAV gyroscope’s random error on the early warning model is also 
examined using Allen variance. Finally, the fading Kalman filter is used to compensate 
the error, thus improving the measurement accuracy of UAV gyro. This research 
innovates the UAV early warning mode, and realises the UAV attitude early warning 
mainly through the angle change of UAV attitude. This early warning method is more 
comprehensive, intuitive and easy to implement in practical application. This study 
assumes the early warning effect of attitude angle on UAV to achieve accurate 
calculation and prediction of unmanned attitude angle and improve the working effect of 
UAV. The practical significance of this research lies in the realisation of automatic early 
warning of UAV attitude anomalies, which is conducive to the analysis and adjustment 
of UAV status by relevant personnel. In addition, the proposed model has broad 
application prospects in the fields of environmental detection and national defence 
security. 

2 Related work 

For the development of MEMS technology, scholars at home and abroad have conducted 
in-depth research on MEMS sensors and UAV attitude detection. A MEMS scale angular 
position sensor was presented by Bakhoum (2022), and it offers several benefits over 
conventional variable capacitors of the same size. To increase the sensor’s sensitivity and 
to get quicker response times and more accuracy, MEMS sensors may change huge 
capacitance. Mousavi et al. (2021) applied the electrostatic levitation force to the micro-
electromechanical system. They discovered many different actuation mechanisms, 
demonstrated the viability of each one using MEMS sensors and pressure switches and 
confirmed via tests that the MEMS sensors are better at precisely detecting side-electrode 
contact force. Scholars such as Su et al. (2018) used MEMS gas sensors in the detection 
of inert gases, and designed an adapted topological structure. They found that the 
structure can respond to the mass loading effect. They found that the structure can 
respond to the mass load effect. In addition, the structure can make the inert gas react 
with metal oxide, thus generating conductivity, so as to realise the accurate detection of 
inert gas. Tina et al. (2021) used nanomechanical cantilever beam sensors in new ring-
energy materials, which significantly improved the sensing performance. They found 
four curved suspended circular adsorption films in the MEMS structure, and then used 
high-precision four-point bending fixture experiments. The strain factor of ITO film was 
tested to achieve improved sensitivity and accuracy. 

Reinhardt and Johansen (2021) proposed a predictive controller for a nonlinear 
model, which can control the quadratic cost of the UAV’s three-axis angle to a minimum 
value. From the experimental results, this method has a strong Applicability and 
accuracy. Fan et al. (2022) created a self-focus mechanism and utilised the transformer 
network approach to identify rotor UAVs. This technique successfully raises the UAV 
identification algorithm’s accuracy to a level that is 1.7 times higher than it was before 
the upgrade. Xu et al. (2019) used decision trees to establish a multi-model unscented 
Kalman filter attitude estimation method. This method uses quaternions to solve the 
attitude and uses decision trees to increase the anti-interference ability of the model. The 
experimental findings demonstrate the resilience and real-time estimate accuracy of the 



   

 

   

   
 

   

   

 

   

    Research on automatic early warning of UAV attitude 69    
 

    
 
 

   

   
 

   

   

 

   

       
 

attitude estimation approach. Ebrahimi et al. (2018) use Unmanned Aerial Vehicles 
(UAVs) to collect mobile phone data in dense wireless sensor networks, and use 
projected compressed data as a solution. It is shown via comparison studies that the 
suggested strategy and the created algorithm have certain benefits. Samir et al. (2020) 
adopted an online model-free deep reinforcement learning in the UAV-assisted Internet 
of Things network. This reinforcement learning can obtain the instantaneous channel 
status information of the UAV in real time and adjust the deployment height of the UAV. 
Meanwhile, MDP and PPO algorithms are used to solve the formulaic problem and 
finally achieve the timely transmission of data. 

To sum up, MEMS sensors have high-detection accuracy and are widely used in 
various fields, especially in the field of unmanned aerial vehicles. However, there are few 
researches on using MEMS sensors to detect UAV attitude. Therefore, this study 
combines the two to optimise the MEMS sensor, and then analyses the impact of MEMS 
sensor on the performance of UAV attitude detection. 

3 Gyro error compensation based on fading Kalman filter in  
MEMS sensor 

3.1 UAV attitude angle measurement based on gyro output 

The study proposes an automatic early warning model for UAV attitude abnormalities 
based on MEMS sensors. The model is mainly divided into three modules. The first 
module is MEMS sensor solution. The second module is MEMS sensor optimisation, and 
the third module is system early warning. After the MEMS sensor completes the data 
collecting and processing, it instantly communicates the data to the early warning system 
and then compares the provided data with the predetermined safety value, therefore 
accomplishing automated early warning. The specific structure of the model is shown in 
Figure 2. 

Figure 2 Structure of automatic early warning model for UAV attitude anomaly based on MEMS 
sensor 
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In Figure 2, different coordinate systems need to be established in the MEMS sensor 
module first, and there is relative motion between the coordinate systems. To solve the 
attitude of the UAV, it is first necessary to solve the coordinate system. The position 
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change of the UAV in the coordinate system is measured by the MEMS gyroscope. The 
study improves the accuracy of drone position changes by calculating the noise in the 
MEMS gyroscope using an Autoregressive Moving Average (ARMA) model and 
removing the noise using a fading Kalman filter. The abnormal attitude state of UAV can 
be judged by the rotation angle. The maximum inclination angle of UAV is 55°, and the 
safety critical value is set to 50°. When the detection value is greater than the safety 
value, the model will give an early warning. Therefore, in the navigation system, the 
calculation of the attitude angle of the carrier plays an important role. The carrier attitude 
angle computation uses the three-axis gyro signal to produce the attitude matrix. The 
calculated attitude matrix may be used to calculate the three rotation angles of the UAV 
coordinate system in the navigation system. First, a schematic diagram is established 
between relevant coordinate systems, as shown in Figure 3. 

Figure 3 Relationship between established related coordinate systems 
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In Figure 3(a), the earth coordinate system and geographic coordinate system are 
established. The rotation between them is represented by the transfer of longitude   and 
latitude L. In Figure 3(b), the body coordinate system and geographic coordinate system 
are established, which are represented by system b  and system n  respectively. Let the 
heading angle be  ; the pitch angle be  ; the roll angle be  . The body coordinate 

system is generated by rotating the geographic coordinate system in various directions, 
according to the notion of attitude angle. There are three commonly used methods to 
solve UAV attitude angle, including Euler angle method, nine-parameter method and 
quaternion method (Peng et al., 2022; Bagheri et al., 2018; Peng et al., 2019). Among 
them, the Euler angle method and the nine-parameter method will generate a large 
amount of calculations during the calculation process, which does not meet the real-time 
performance. As a result, the quaternion method is chosen for UAV attitude solution. The 
quaternion method takes one coordinate system as the reference object, and the rotation 
relationship of another coordinate system or vector can be described by quaternion. The 
notion of attitude quaternion is taught using the quaternion method’s properties. 
Assuming that the vector q  represents the attitude quaternion vector, and restricting the 

vector q  in 0[ , ]Tq q q , the specific expression is shown in the formula (1). 

2
0 1T Tq q q q q    (1) 
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Formula (1) is the constraint of attitude quaternion vector. The superscript T  is the 

conjugate of the quaternion; 0q  means a vector, and 0 cos
2

q
 ; q  also means a vector, 

and its value is calculated as shown in the formula (2). 

1 2 3 sin
2

q iq jq kq
     (2) 

Equation (2) represents the calculation form of vector,   represents the rotation axis of 

the vector;   represents the rotation angle of the vector; i , j , k  are all real numbers. 

The unit quaternion can represent the transformation relationship between the UAV 
coordinate system and the reference coordinate system. According to the vector rotation 
transformation relationship, the formula (3) is obtained. 

1n br q r q     (3) 

Formula (3) represents the rotation transformation relationship of vector,   is used to 
represent the product calculation in the quaternion. As a result, the attitude matrix 
expressed by quaternion is shown in equation (4). 

 
   

   
   

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2

2 2

2 2

b
n

q q q q q q q q q q q q

C q q q q q q q q q q q q q

q q q q q q q q q q q q

     
       
      

 (4) 

Formula (4) represents the quaternion form of the attitude matrix, and the quaternion 
vector satisfies the differential equation, then there is formula (5). 

0.5 b
nbq q    (5) 

In formula (5), b
nb  represents the projection of rotational angular velocity of b  system 

relative to n  system in n  system. If b
nb  is expressed by quaternion, the expression of 

projection is shown in formula (6). 

 0
TTb b

nb nb     
 (6) 

Bring formula (6) into the differential equation and expand to get formula (7). 
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                                 






 (7) 

Formula (7) represents the quaternion differential equation; b
nbx  represents the x-axis 

angular rate value of the b  system coordinate system; b
nby  represents the y-axis angular 

rate value of the b  system coordinate system; b
nbz  represents the z-axis angular rate 

value of the b  system coordinate system. The calculation technique for solving the 
matrix differential problem may be used to solve the quaternion differential equation. 
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The solution method is the Picard successive approximation method, and then the 
analytical formula of the quaternion differential equation can be obtained, as shown in 
formula (8). 

     
*

0

1
2

0

t b
nbM dt

tq q e q q
  (8) 

Formula (8) represents the analytical expression of quaternion differential equation, *M  
is the set of exponential integrals. Take the approximate value of the exponential integral 
formula to obtain the formula (9). 

   *

0

0
0

0
0

x y z

t x z yb
nb

y z x

z y x

M dt

  
  

    
  

   
      
   
    

  (9) 

In formula (9), , ,
, , 180

b
nbx y z

x y z

T 


 
  , and T  represents the filter cycle. The 

transformation quaternion of coordinate system b  obtained from coordinate system n  
can be determined by the rotation order of UAV triangle, and its specific expression is 
shown in Formula (10). 

     
 

 

 

cos sin
2 2

cos sin
2 2

cos sin
2 2

q q Z q X q Y

q Z k

q X i

q Y j

 

 

 

 

   



 

  


 (10) 

Formula (10) represents the rotation calculation of UAV in all directions,  q Z  

represents the heading angle of the UAV and is negative;  q X  represents the pitch 

angle of the UAV;  q Y  represents the roll angle of the UAV. Therefore, if the 

corresponding equation is replaced in the formula (10), the functional relationship 
between the quaternion and the attitude angle can be obtained. The attitude angle may 
then be determined, and its calculation range is inside the inverse trigonometric 
function’s primary value range, therefore the quadrant factor should also be included. 
According to the above analysis, the quaternion method can work with full attitude, and 
it is subject to fewer restrictions. Using this approach to solve linear differential 
equations ensures that the equation system has only four unknowns and reduces the 
length of work significantly. Furthermore, the calculating efficiency is increased. 

3.2 MEMS gyro error analysis and compensation 

The MEMS gyroscope is the essential technology in the UAV attitude measurement 
system, and the measurement precision of the gyroscope has a vital link with the UAV 
attitude. If you want to obtain high-precision UAV attitude information, it is essential to 
improve the UAV gyro measurement accuracy. As a result, this part investigates the 



   

 

   

   
 

   

   

 

   

    Research on automatic early warning of UAV attitude 73    
 

    
 
 

   

   
 

   

   

 

   

       
 

gyroscope error, develops the appropriate model, evaluates the error characteristics and 
finally adjusts for it. Gyro error includes systematic error and random error. The 
systematic error is the most important error source in gyro error. The random error is 
mainly caused by noise, and its size has a positive correlation with time. MEMS 
gyroscope output is composed of systematic error and random error, and its expression is 
as formula (11). 

z z f zS B n       (11) 

In formula (11),   represents the real angular velocity of the UAV; zS  represents the 

scale factor error; fB  represents the zero bias error; zn  represents the random drift. 

Among them are an effective calibration technique for compensating the fB  system fault 

and the zero-mean value of the static data for eliminating zS . When researching random 

error compensation, an ARMA model can be chosen. This model is one of the 
standardised models of time series analysis. The autoregressive moving average model of 
this model is expressed in  ,ARMA p q , where p  and q  are the order of the model. Its 

general expression is shown in formula (12). 

1 1 2 2 1 1 2 2t t t p t p t t t q t qx x x x w w w w                          (12) 

In formula (12),   represents the coefficient of autocorrelation;   represents the 

moving average. The order of the model needs to be determined during the modelling 
process. The commonly used methods include Final Prediction Error Criteria (FPE) and 
Akaika Information Ceiterion (AIC). The order of gyro random error model is small. 
Therefore, in the actual system, the model generally adopts the moving average order less 
than or equal to the autoregressive order. Meanwhile, Moving Average (MA) and ARMA 
model parameters are estimated using the armax function, and the relevant AIC and FPE 
values are calculated (Haile et al., 2021; Dixit and Jayakumar, 2022). The criterion 
values of different models are shown in Table 1. 

Table 1 Comparison of criterion values of different models 

Criterion  
value 

Model Type 

(1,1)ARMA  (2,1)ARMA  (2, 2)ARMA  (1)MA  (2)MA  (3)MA  

FPE 0.0027 0.0021 0.0020 0.0091 0.0040 0.0023 

AIC –5.9756 –6.2433 –6.3727 –4.6987 –5.3895 –5.7941 

The values of FPE and AIC should be based on the minimum principle, so the random 
drift model of the gyro (2,1)ARMA  is selected. The model parameters were fitted by the 

least squares method. Its specific expression is shown in formula (13). 

         0.06791 1 1.574 1 0.7019 2x k w k w k x k x k        (13) 

Equation (13) represents the fitting form of the state vector of gyro drift,  x k  represents 

the state vector of gyro drift;  w k  represents the white noise in the system. The contrast 

of the white noise is 0.0108, and the mean value of the white noise is 0, according to the 
residual signal of the residual information number that was calculated after choosing the 
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model fitting. After the model is determined, the research uses fading Kalman filter to 
compensate (Hu et al. 2018; Nazemipour and Manzuri 2018; Liu et al. 2021). Since the 
noise in the Kalman filter equation is all white noise, the noise of the studied system does 
not meet the conditions and the filter needs to be improved. The improvement measures 
can use the state expansion method (Sun et al. 2021; Manzoni et al., 2021). First, let 

 1, ,
T

k k kX x x   be the state vector of the system, in which the angular rate sensitive 

by the gyro is represented by  k ; the random error corresponding to the model  

is expressed in kx . Then, the system state and measurement equation are shown in 

Formula (14). 

, 1 1
1

1

0
01

k kk k
k

k k

k k k k

X X I
W

I
Z H X V


 

 




                     
  

 (14) 

In formula (14), kZ  represents the observed value of the system; V  represents the 

variance of the observed signal under static conditions, its mean value is 0 and the value 
is 0.0275; kH  represents a time-varying matrix; I  represents the identity matrix. The 

attitude angle error of the UAV before and after filtering can be obtained by formula 
(14). Five inertial measurement module defects – rate ramp R , flicker noise B , 
quantisation noise Q , angular rate random walk K  and angle random walk N  – make 

up the majority of gyro random errors. In the analysis of the random error of the 
gyroscope, the Allan variance method is recognised by IEEE as a standard method for 
random error testing (Maddipatla et al., 2021; Hofmann and Knopp 2022). The  
formula (15) can be obtained by integrating the Allan variance of the five random errors. 

22 2 2 22
2

2

32( ) ln 2
2 3

QN R t K tBt
t t




      (15) 

In formula (15), 2 ( )t  is the expression of Allan variance. The Allan technique curve is 

created using formula (14), as shown in Figure 4. 

Figure 4 Sample of Allan variance double logarithm curve 
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In Figure 4, according to the length of the time series, the Allan variance can accurately 
identify the noise ratio and noise source, which is of great significance for improving the 
detection accuracy of drones. After determining the optimisation method of the second 
module of the model, the early warning module is constructed. The flow chart of the 
early warning module is shown in Figure 5. 

Figure 5 Flow chart of early warning model 
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Setting a safe value for the UAV attitude deflection angle in the early warning module is 
the major way to achieve real-time early warning of UAV attitude abnormality. The 
model will provide an early warning indication when the input value of the MEMS 
sensor exceeds the safe value; when the input value is less than the safe value, the model 
shows a normal indication. 

3.3 Model experiment environment and parameter settings 

In the experiment, the medium-precision MEMS inertial sensor ADIS16405 produced by 
ADI Company was selected as the measurement unit; a three-axis turntable model  
AS-0011 was used for dynamic and static experiments. In the performance analysis of 
UAV attitude detection, the scale error of the selected level instrument is 0.02 mm/lm, 

and the initial value of the state selected by the Kalman filter is  0 0 0 0
T

X  . 

As an important parameter, the random error of MEMS gyroscope needs to be 
determined in advance. The experimental turntable is used to obtain the bias data of the 
x-axis, y-axis and z-axis of the MEMS gyroscope. After that, the bias data is processed in 
blocks, and the average value after processing is totalled by the square difference. Then, 
as illustrated in Figure 6, create the equivalent Allan variance log-log curve based on the 
total. 
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Figure 6 Allan variance double logarithm curve in three axis direction 
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Figure 6, the abscissa is the value of lg t ; the ordinate is the value of lg t . The value of 

each noise factor for the MEMS gyroscope may be calculated using the formula (15) and 
the least squares approach of fitting the Allan variance double-logarithmic curve. The 
error coefficients obtained by the MEMS gyroscope according to different axes are 
shown in Table 2. 

Table 2 Error coefficient of MEMS gyroscope according to different axes 

Noise figure x-axis y-axis z-axis 

Q  0.0239 0.0108 0.1325 

N  0.1382 0.0142 0.1037 

B  0.3082 0.2175 0.3581 

K  0.7382 0.6218 0.9513 

R  0.0182 0.0032 0.0203 

Seen from the data in Table 2, the coefficients of the angular rate walk error in the three 
axes are the largest, and they are 0.7382, 0.6218 and 0.9513 in the x-axis, y-axis and  
z-axis, respectively; the following are the flicker-induced error coefficients, respectively 
0.3082, 0.2175, 0.3581; the remaining three error coefficients account for a small 
proportion. Therefore, it has been convincingly shown that the MEMS gyro error term 
exhibits both the first-order Markov process and continuous drift. As a result, the 
variance of the model’s random drift white noise is 5°/h, and the first-order Markov 
process noise’s mean square error is 0.0002 g. 
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4 Analysis of detection effect of UAV attitude abnormal state based  
on MEMS sensor 

4.1 Performance analysis before and after MEMS gyroscope filtering 

The calculation form and parameter type of the model have been determined. Now the 
model parameters and performance are determined by experiment. Firstly, the 
performance of the improved filter is analysed to determine the prediction accuracy of 
the model under static and dynamic conditions. The research contrasts the fading Kalman 
filter’s error impact with the sine wave’s normal condition in a traditional Kalman filter. 
In the dynamic and static experiments of the conventional Kalman filter, the initial values 
are selected according to the parameters. The resulting static filtering graph is shown in 
Figure 7. 

Figure 7 Kalman static filtering graph 
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Figure 7 shows the static filtering graph obtained by conventional Kalman filter. The 
error standard deviation before filtering is 0.1901(º/s), and the error standard deviation 
after filtering is 0.0070(º/s), which is 3.682% of that before filtering. Therefore, it can be 
judged that under static conditions, the random error of the gyroscope can be greatly 
reduced through the Kalman filter, which significantly improves the measurement 
accuracy of the gyroscope. Place the system on a three-axis turntable, control the angular 
speed of the turntable at 20º/s, 40º/s and 60º/s, respectively, and analyse the x-axis of the 
angular rate gyro. According to the difference in angular rate, the corresponding  
results before and after filtering are obtained and the comparison of the results is shown 
in Table 3. 

Table 3 Mean value and standard deviation of errors before and after filtering at different 
angular rates 

Angular  
rate (º/s) 

Mean value of error (º/s) Standard deviation of error (º/s) 

Before filtering After filtering Before filtering After filtering 

20 –0.3312 –0.1013 0.2412 0.0102 

40 –0.3233 –0.0962 0.4243 0.0124 

60 –0.3624 –0.1023 0.3314 0.0108 
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Table 3 demonstrates that when the angular rate is constant. The changes of the error 
mean value and error standard deviation before and after filtering are less different from 
those in the static experiment. Because of this, even while the traditional Kalman filter 
may also lower the gyroscope’s random error in the situation of constant angular rate, the 
gyroscope’s measurement accuracy can be enhanced to a certain degree. However, in 
reality, it is impossible for the gyroscope to remain stationary or keep moving at a 
constant angular rate. When the UAV is in motion, the angular rate values at each 
moment change differently. In this case, the conventional Kalman filter is used to obtain 
the effect shown in Figure 8. 

Figure 8 Effect diagram of Kalman filter when the angular rate changes 
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Figure 8 shows that before filtering, it is in a state of sine wave oscillation and its angular 
rate changes momentarily in the interval [–5º/s, 5º/s]. The output value of the MEMS 
gyroscope has a large error after filtering, which cannot accurately reflect the angular rate 
of the gyroscope. In view of this situation, the study uses the fading Kalman filter for 
comparison. In addition, in the state of sine wave oscillation, the fading Kalman filter is 
used to obtain the effect diagram in Figure 9. 

Figure 9 Effect diagram of fading Kalman filter when the angular rate changes 
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Figure 9 depicts the fading Kalman filter’s sine wave oscillation condition both before 
and after filtering. Figure 9 shows that the fading Kalman filter’s sine wave oscillation 
range before and after filtering is in the range [–5º/s, 5º/s], and that the sine wave 
oscillation is more stable and the error produced is reduced. The results demonstrate that 
even when the angular rate value varies, the fading Kalman filter still has a decent 
tracking effect. 

4.2 Static and dynamic experimental performance analysis of attitude 
measurement simulation system 

The attitude of the UAV is discovered and examined after the MEMS gyroscope’s 
performance in static and dynamic states is examined, both before and after filtering. The 
experiment’s mean error and mean square error serve as indicators of detection accuracy. 
The difference between the projected attitude and the actual attitude is a good indicator of 
how accurate early warning is. Firstly, the static heading and attitude of the UAV are 
measured and analysed in the experiment: the three axes of the AS-0011 turntable and 
the three axes of the measuring unit are kept coincident; the level meter is levelled and 
zeroed according to the turntable; then a 200 s static experiment is carried out. The 
output curves of filtered pitch angle, roll angle and heading angle can be obtained 
through the above operations, as shown in Figure 10. 

Figure 10 Results of filtered attitude angle output curve in UAV static experiment 
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Figure 10 shows the analysis results of UAV heading and attitude system in static 
experiment. In Figure 10(a), after the experiment lasted for about 4 s, the pitching angle 
of the UAV tended to be stable and its variation value was between –0.1° and 0.1°. In 
Figure 10(b), the degree of change of the roll angle of the UAV also tends to be stable at 
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about 4 s, and its change value changes in the range of plus or minus 0.05°.  
In Figure 10(c), the change of UAV’s heading angle is stable after 8 s, and it is stable at 
about 52°. It demonstrates that, even when static unmanned motion accelerates, the 
UAV’s heading and attitude system has a quick convergence rate and does not diverge. 

Figure 11 Attitude error results of UAV attitude measurement system in static state 
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(a) Static pitch angle curve
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In the static experiment, the experiment collected the data of 500 times of static 
experiment and the attitude data output by the attitude system measurement, and 
performed error analysis on it. The results are shown in Figure 11. In Figure 11(a), the 
mean error of UAV pitch angle detection tends to be stable after 25 experiments, the 
mean error is about 0.12°, and the mean square error is about 0.20°. In Figure 11(b), the 
UAV error of the roll angle tends to be stable after 50 experiments. The mean error is 
about –0.16°, and the mean square error is about 0.31°. In Figure 11(c), the error of the 
UAV heading angle detection tends to be more stable. The mean error is about 0.50°, and 
the mean square error is about 1.03°. The attitude system performs better at error 
detection in static trials, according to an examination of the total error data. The UAV’s 
heading angle error, which is the consequence of mistakes brought on by things like 
magnetic media, is roughly 0.5°, while the pitch angle and roll angle faults are also 
within 0.2°. Therefore, the attitude system has high-detection accuracy in the static state. 
When the attitude of the UAV is about to be abnormal, it can detect and give an early 
warning at the first time. 

A three-axis turntable is employed in the dynamic experiment to replicate the highly 
manoeuvrable flying condition of the UAV. The three-axis turntable is attached with the 
UAV attitude measuring equipment during the experiment. The system filtering 
performance and attitude angle calculation accuracy are examined by contrasting the 
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estimated attitude angle of the system with the actual attitude angle of the turntable 
experiment. The initial attitude angle of the UAV is measured experimentally: the pitch 
angle is 7.7°; the roll angle is 0°; the heading angle is 149°. The experiment time is set to 
60,000 s.  

Figure 12 is the comparison result between the obtained system attitude angle curve 
and the real attitude angle. The filter is shown in an unstable condition in Figure 12(a) 
when the system first begins to operate, and in this state there are several crossings 
between the attitude value line type calculated by the system and the real value line type. 
But at about 100 s, the line patterns began to overlap, indicating that there was a small 
error between the attitude estimation of the system and the real attitude at that moment. 
Figure 12(b) illustrates how, when the UAV issues a right turn instruction, the roll angle 
quickly changes, going from –35 to 35° in a short period of time, yet the filtered roll 
angle continues to be very similar to the real roll angle. In Figure 12(c), the system can 
realise all-round attitude tracking in the heading angle, and can also realise smooth 
transition at the critical point. 

Figure 12 Comparison results of system attitude angle curve and real-attitude angle 
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500 sets of experimental data were gathered for the turntable experiment in the high 
manoeuvring condition of the UAV, and the attitude angle errors of the two were 
compared and examined. Figure 13 shows the attitude error diagram in the dynamic 
experiment. In Figure 13(a), the detection error of the pitch angle tends to be stable after 
30 experiments. The mean error is about 0.49°, and the mean square error is about 0.99°. 
In Figure 13(b), the detection error of the roll angle tends to be stable after 50 trials. The 
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mean error is about 0.52°, and the mean square error is about 1.00°. In Figure 13(c), the 
detection error of heading angle tends to be stable after 75 trials. The mean error is 1.80°, 
and the mean square error is about 3.8°. In terms of the overall error findings, the UAV’s 
pitch and roll angle errors are both under0.5°, and the average heading angle error is kept 
to within 2°. The experiment validates the validity of the early warning model for the 
abnormal condition of the UAV suggested in the research, and the findings demonstrate 
that the attitude detection of the UAV still has good detection accuracy in the state of 
high mobility. 

Figure 13 Attitude error results of UAV attitude measurement system in high manoeuvre state 
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(b) Dynamic roll angle curve
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5 Conclusion 

The advancement of UAV technology has increased along with the constant 
advancement of microelectronics technology, and it is now extensively used. However, 
in the practical application of UAV, the problem of abnormal attitude often occurs, which 
leads to the damage of UAV. As a result, it is crucial to find and warn about UAV 
attitude anomalies as soon as possible. In this experiment, an automatic early warning 
model of UAV attitude anomaly was established. The simulation results show that in the 
system static simulation experiment, the MEMS sensor compensated by the fading 
Kalman filter can predict the three-axis angle of UAV with high accuracy in a short time, 
and the average prediction error of the three-axis angle is 0.127°, –0.163° and 0.513°, 
respectively; In the experiment of high manoeuvrability, the prediction of MEMS sensors 
can still be highly consistent with the actual situation and their three-axis angular errors 
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are within 2°, 0.490°, 0.524° and 1.820°, respectively. To address the issue of the MEMS 
gyroscope’s poor accuracy, an Allan variance analysis of the gyroscope error is 
performed, and the impact of each mistake item on the random error of the gyroscope is 
examined. In order to improve the measurement accuracy of MEMS gyroscope, the 
ARMA (2,1) model of random drift of gyroscope is constructed experimentally. In this 
regard, Kalman fading Kalman filter is used to compensate the random drift error of 
gyroscope in the experiment, which solves the problem of poor compensation effect of 
traditional filter. The proposed method can greatly improve the detection accuracy of 
sensors, and can realise real-time and effective early warning of UAV attitude anomalies. 
However, there are still shortcomings in the research. For instance, in the simulation 
experiment, the effects of the weather, temperature and magnetic field on UAV are not 
simulated. Aiming at further improving the attitude prediction of UAVs in actual 
environments, future study may examine the application impact of MEMS sensors in 
various weather, temperature and magnetic field intensity conditions. 
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