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Abstract: This study considers a new flow shop scheduling problem with 
synchronous material movement. Specifically, we consider an automated 
machining centre that consists of a loading/unloading station, two CNC 
machining stations, and a material handling device. The material handling 
device is a rotary table that moves jobs between stations simultaneously. Given 
a set of jobs that need to be processed in the machining centre, the objective of 
the problem is to find the sequence that minimises the makespan. This problem 
can be shown to be NP-hard in the strong sense. A dynamic programming 
algorithm is proposed to obtain an optimal sequence for small- and  
medium- size problems. For large-scale problems, two heuristic algorithms are 
developed to obtain a near-optimal solution in a short time. Computational 
results for the proposed algorithms are provided. 
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1 Introduction 

Automated manufacturing systems which integrate material handling and processing 
devices are commonly employed in manufacturing industries to gain a competitive 
advantage. Typically, an integrated cell or machining centre consists of a 
loading/unloading (L/U) station, one or more processing machines, and material handling 
devices to efficiently process and move a group of similar parts. Examples of this type of 
integrated cells are the T-line machining centres developed by Cincinnati Milacron 
(1989). 

Figure 1 A T-line machining centre with two CNC machines (see online version for colours) 
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In a T-line machining centre, a job is loaded at an L/U station, processed sequentially 
through a number of computer numerical control (CNC) machines, and finally unloaded 
from the machining centre at the L/U station. Jobs in this machining centre are all carried 
by a material handling device - a rotary table. Once the operations of all jobs currently 
placed in the stations are finished, the rotary table rotates in a clockwise or  
counter-clockwise direction to move these jobs simultaneously to the next corresponding 
stations. Figure 1 shows a T-line machining centre with two CNC machines and a rotary 
table with three pallets. In this setting, while two jobs, say A and B, loaded in two pallets 
are being processed by CNC2 and CNC1, respectively, another job, say C, is concurrently 
being loaded onto the third pallet at the L/U station. After the processing operations on 
both machines and the loading operation are completed, the table rotates 120 degrees 
counter-clockwise so that job C is transported to CNC1, and job B to CNC2. Finished job 
A will be unloaded from the pallet at the L/U station and a new job, say D, will be loaded 
on the pallet. 

Transporting jobs simultaneously is referred to as synchronous material movement in 
this paper. This study focuses on sequencing jobs in this particular type of machining 
centre with two CNC machines. Efficiency is one of the desirable characteristics of these 
machining centres, and minimising the makespan is equivalent to maximising the 
utilisation of the machining centre. Thus, the objective of this study is to find the job 
sequence that minimises the makespan. Huang (2008) has proven that the scheduling 
problem in a T-line machining centre even with a single machine is NP-hard in the strong 
sense. The problem with one machine is shown to be equivalent to the numerical 
matching problem with target sums which is known to be strongly NP-hard (Garey and 
Johnson, 1979). A similar argument can be applied to show NP-hardness of this problem 
with two machines by assuming processing times on the second machine to be zero for 
all jobs. In this study, we propose an exact dynamic programming (DP) algorithm for the 
two machine problem with the objective of minimising the makespan. Since the time 
complexity of the DP algorithm is exponential, it can only be used to solve small- and 
medium- size problems. For large-scale problems, two heuristic algorithms are also 
proposed to obtain a near-optimal solution in a short time. Computational results for these 
algorithms are also provided. 

This paper is divided into five sections. Section 2 provides a literature review.  
Section 3 includes the statement of the problem, the proposed DP algorithm, and the 
analysis of its computational effort. In Section 4, a pair of two-phase heuristic algorithms 
is developed and results of numerical experiments for all algorithms are provided. 
Conclusions and directions for future research are stated in Section 5. 

2 Literature review 

Most of the literature regarding automated machining centres or robotic cells considers 
the scheduling of jobs and robot moves between machines. In these manufacturing cells, 
parts are usually loaded and unloaded in different locations and material movement 
between stations is asynchronous. Sethi et al. (1992) study the problem of sequencing 
jobs and robot moves in a robotic cell where a single robot is used to transport jobs 
between stations. The cell is a flow shop system where jobs pass sequentially through the 
input station, machine stations, and the output station. They show that only two possible 
optimal policies of robot moves exist for the two-machine robotic cell scheduling 
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problem with a single part type. For the problem with multiple part-types, a polynomial 
time algorithm is derived to minimise cycle time for a given fixed sequence of robot 
moves. Levner et al. (1995) propose a polynomial-time algorithm to obtain the minimum 
makespan for a two-machine robotic cell. In this robotic cell, there are two robots 
dedicated to load and unload jobs in each machine, and the loading and unloading times 
are job-dependent. There is also a transporting robot to move jobs from the first machine 
to the second machine. In addition, a job completed on the first machine should be 
transported to a storage buffer which is located in the range of the robot dedicated for the 
second machine. Logendran and Sriskandarajah (1996) develop analytical methods for 
determining an optimal sequence of jobs and robot moves with minimum cycle time in 
three different types of two-machine robotic cells: a robot-centred cell, a mobile robot 
cell, and an in-line robot cell. They consider scheduling problems with a single part-type 
and multiple part-types in these three cellular layouts. Given that n is the number of jobs, 
Hall et al. (1997) provide a O(n4) time algorithm to obtain an optimal part sequence and 
robot moves in a two-machine robotic cell with multiple part-types. Aneja and Kamoun 
(1999) formulate this problem as a travelling salesman problem with a special cost 
structure, and improve the complexity of the algorithm from O(n4) to O(n log n). 
Dawande et al. (2005) present a survey and summary of the recent developments 
regarding scheduling in robotic cells. They provide a classification scheme for scheduling 
problems of robotic cells based on the characteristics of the manufacturing cells such as 
robot devices, machine environments, and processing restrictions. They also discuss 
implementation issues and the use of optimal policies for different system settings. 

Synchronous transportation of jobs between stations is a particular characteristic of 
the machining centre addressed in this study. Without considering the L/U station, if 
there are only two machines or stations in the machining centre with the mechanism of 
synchronous material movement, the problem is equivalent to a two-machine flow shop 
problem with blocking which can be solved in polynomial time by the Gilmore-Gomory 
(1964) algorithm. Hall and Sriskandarajah (1996) prove that a three-machine flow shop 
problem with blocking is strongly NP-complete. However, a three-machine flow shop 
with synchronous material movement is not reducible to the problem with blocking, 
because the constraint of blocking only restricts transfer of a job between two successive 
machines. In the problem with blocking, for example, a job completed on the second 
machine can be released to the third machine when it becomes idle. In the case of 
synchronous transfer, however, the job processed by the second machine can only be 
released to the downstream machine when both of the first and third machines finish their 
current operations. Soylu et al. (2007) consider a flow shop scheduling problem with 
synchronous transfer between stations. They develop a branch-and-bound algorithm with 
several lower and upper bounds to efficiently obtain the minimum makespan for a 
moderate-size problem. They indicate this type of manufacturing system with 
synchronous transfer is advantageous when set-ups for a transporter are timely or costly, 
or when buffer spaces are limited between stations or jobs are physically large. Huang 
and Hung (2010) applied a genetic algorithm combined with a local search to solve the 
problem with multiple machines. The local search was applied to the subsequence where 
the variance of the processing times of these jobs was the largest. However, in this paper, 
we propose an exact algorithm to obtain an optimal solution and derive some analytical 
results for the problem with two machines. Furthermore, we propose heuristic algorithms 
based on the insights from the analytical results. 
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3 DP algorithm 

3.1 Problem definition and notation 

The T-line machining centre considered in this study consists of two CNC machines, 
denoted as CNC1 and CNC2, an L/U station, and a rotary table with three pallets. Jobs 
may require processing by both CNC machines or only one of them, and have to be 
loaded onto a pallet before processing. After being loaded onto a pallet, each job must 
pass through in the same sequence, first CNC1 and subsequently CNC2. Finally, the job 
will return back the L/U station to be unloaded from the machining centre. One pallet can 
only contain one job, and each CNC machine can only process one job at a time. Assume 
there are n jobs that have to be processed by the machining centre and all jobs are 
available at time zero. The time for each rotation of the rotary table is constant. For the 
makespan criterion, the optimal sequence is independent of the rotation time; thus, the 
rotation time can be neglected. The loading and unloading times for job j are lj and uj, and 
its processing times on CNC1 and CNC2 are pj1 and pj2, respectively. The problem is to 
determine a job sequence that yields the minimum makespan. 

Figure 2 illustrates a schedule of jobs at each station. Let Ci be the ith cycle time 
representing the time period between rotations i –1 and i of the rotary table. The number 
of cycles in a schedule with n jobs is n+3. In the first three cycles, there are only loading 
operations performed at the L/U station. Similarly, only unloading operations are 
required in the last three cycles. From cycle 4 to cycle n, a job should be unloaded from 
the rotary table first and a new job will be loaded. Since the rotary table does not rotate 
until the completion of all operations performed at each station, a cycle time is equal to 
the largest operation time among the corresponding operations currently performed at 
each station. Thus, a cycle time can be represented as follows given a job sequence job[1], 
job[2],…, job[n] where the notation job[i] represents the job is sequenced in position i: 

{ }[ 1] [ 2]2 [ ] [ 3]max , , , 1, , 3,i i i i iC p p l u i n− − −= + = +K  (1) 

where l[k] = 0, p[k]1 = 0, p[k]2 = 0, and u[k] = 0 for k ≠ 1,…, n. 

Figure 2 A schedule of jobs at each station in a two-CNC T-line machining centre (see online 
version for colours) 
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Therefore, the makespan of a sequence is the summation of all cycle times which is 

formulated as 
3

1
.

n
ii

C
+

=∑  Due to the systematic structure of the problem requiring a 

sequence of interrelated decisions, DP is an efficient approach to obtain an optimal 
solution (Dreyfus and Law, 1977). Thus, a DP algorithm is proposed in this study and a 
computational analysis for the algorithm is presented. 

3.2 DP formulation 

A forward DP procedure is formulated for the problem of finding the minimum 
makespan. The jobs are numbered from 1 to n. Let N = {1,2,…, n} be the set of jobs and 
S be a subset of N containing the jobs that have already been processed in the machining 
centre. Let g and h represent the jobs concurrently being processed on CNC2 and CNC1 
respectively, and j be the job being loaded at the L/U station. Then, the DP formulation is 
as follows: 

• Optimal value function (OVF): fi(S, g, h, j) = minimum completion time for 
processing jobs g and h on CNC2 and CNC1, respectively, unloading the last job in S 
and loading job j at the L/U station, given that the i jobs in S have already been 
completed. 

• Optimal policy function (OPF): pi(S, g, h, j) = last job unloaded at the L/U station. 
Equivalently, this is also the last job added to set S. 

• Recurrence relation (RR):  

1 1 2( , , , ) min{ ( \{ }, , , ) max{ , , }};

1,..., 3;{ , , } ; \{ , , },| | .

i i h g j k
k S

f S g h j f S k k g h p p l u

i n g h j N S N g h j S i

−
∈

= + +

= − ⊆ ⊆ =
 

• Boundary condition (BC): 

{ } { }0 1 1 2( , , , ) max , max , , ;{ , , } .g g h h g jf g h j l p l p p l g h j N∅ = + + ⊆  

• Answer (ANS): { }2
{ , }

min ( , , , ) ,n
g h N

f S g h−
⊆

∅  

where 

{ }{ } { }2 3 1 2 2( , , , ) min ( \{ }, , , ) max , , max ,

;{ , } ; \{ , },| | 2.

n n h g k h g
k S

h

f S g h f S k k g h p p u p u

u g h N S N g h S n

− −
∈

∅ = + +

+ ⊆ = = −
 

3.3 Analysis of computational effort 

The computational effort of the DP algorithm is evaluated by the number of operations 
performed: ‘addition’ and ‘comparison’. The numbers of operations required for each 
stage of the algorithm are summarised as shown in Table 1. 
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Table 1 Number of operations required for each stage 

Stage Number of combinations Additions Comparisons 

BC ( i = 0 ) n(n – 1)(n – 2) 2 3 
RR (1 ≤ i ≤ n – 3) 3( 1)( 2) n

in n n C −− −  2i 2i + (i – 1) 

ANS fn–2 ( i = n – 2) n(n – 1) n 2(n – 2) + (n – 3) + 1 
Minimum makespan 1 0 n(n – 1) – 1 

In boundary condition, there are n(n – 1)(n – 2) combinations for jobs g, h, and j, and 
each combination requires two additions and three comparisons to obtain the value for f0. 
In recurrence relation, for each i, there are n(n – 1)(n – 2) choices for jobs g, h, and j, and 

3n
iC −  combinations of jobs in set S. Each combination of (S, g, h, j) has i candidates in set 

S for k, and extra i – 1 comparisons are required to obtain minimum values among these i 
candidates. In the answer formulation, there are n(n – 1) different (g, h) pairs for fn–2, and 
each pair has n – 2 candidates for k. Moreover, among these n – 2 candidates n – 3 
comparisons are performed to acquire the minimum value for each fn–2. Then, n(n – 1) – 1 
comparisons are needed to obtain the minimum makespan among these fn–2. Therefore, 
the total number of additions required is: 

( )

3
3

1

4 4 2
0

4 3

2 ( 1)( 2) 1 ( 1)( )

2 ( 1)( 2) 1 ( 3) ( 1)

2 ( 1)( 2)( 3)2 ( 1)(3 4) ( 1)( 2)( 3)2 .

n
n
i

i

n n
jj

n n

n n n i C n n n

n n n n C n n

n n n n n n n n n n n

−
−

=

− −
=

− −

⎛ ⎞
= − − + ⋅ + −⎜ ⎟⎜ ⎟

⎝ ⎠

= − − + − + −

= − − − + − − ≈ − − −

∑

∑  

The total number of comparisons required is: 

( )3 33 3
1 1

4 3

4 3

4

( 1)( 2) 3 6 ( 1)( 2) ( 1) 1

( 1)( 2)(3( 3)2 2 1) 6 ( 1)( 2) ( 1) 1
3 ( 1)( 2)( 3)2 ( 1)( 2)(7 2 ) ( 1) 1
3 ( 1)( 2)( 3)2 .

n nn n
i ii i

n n

n n

n

n n n i C C n n n n n

n n n n n n n n n
n n n n n n n n n
n n n n

− −− −
= =

− −

− −

−

= − − ⋅ − + − − + − −

= − − − − + + − − + − −

= − − − + − − − + − −

≈ − − −

∑ ∑
 

Thus, the computational effort for this DP algorithm is O(n42n–3). In addition, the 
computer memory required to store the calculated results of each state is also crucial for 
executing the DP algorithm. In order to compute the results of stage i+1, all states in 
stage i have to be stored and the number of states is 3( 1)( 2) ,n

in n n C −− −  as shown in 
Table 1. Therefore, the computer space required to keep the results of these states could 
be another major restriction of the DP algorithm. 

4 Two-phase heuristic algorithms 

Because the problem is strongly NP-hard, heuristic algorithms are proposed to solve 
large-size problems efficiently. The proposed algorithms consist of two stages: the 
constructive stage and the improvement stage. In the constructive stage, two constructive 
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heuristics are developed. One forms an initial sequence by applying the Gilmore-Gomory 
algorithm to the problem while neglecting the loading and unloading times. The other 
forms an initial sequence by inserting a job in a position of a given sequence that yields 
the minimum makespan. In the improvement stage, the neighbourhood search algorithm 
with modified termination conditions is employed. Furthermore, a formulation to derive a 
lower bound (LB) value is also presented. 

4.1 Constructive algorithms 

When the loading and unloading times are smaller than the processing times, we only 
have to consider the processing times on machines CNC1 and CNC2. In this case, the 
problem can be regarded as a two-machine flow shop problem with blocking, which can 
be solved optimally by the Gilmore-Gomory algorithm. As a result, the sequence 
generated by the Gilmore-Gomory algorithm will be the initial seed for the improvement 
stage while neglecting the loading and unloading times. The makespan of the initial seed, 
including the loading and unloading times, will be calculated based on this sequence. 
This constructive algorithm is called CAGG (Constructive Algorithm Gilmore-Gomory). 

Furthermore, a LB value can be derived based on the assumption of neglecting the 
loading and unloading times. In Figure 2, if the cycle time of cycle i(i = 2,…, n + 2) is 
identified by the processing time of CNC1 or CNC2, the minimum value of the 
summation of these cycles can be obtained by applying the Gilmore-Gomory algorithm to 
the problem which only considers the processing times on CNC1 or CNC2. This minimum 
value plus the cycle times of the first and last cycles, which are equivalent to the smallest 
loading and unloading times, will be a LB for the original problem. 

Lemma 1. The value, 
1,..., 1,...,

min min ,i GG i
i n i n

l MS u
= =

+ +  is a LB for the makespan problem in a  

T-line machining centre with two CNC machines, where MSGG is the optimal makespan 
obtained by the Gilmore-Gomory algorithm while neglecting loading and unloading 
times. 

Proof: MSGG is a LB to the makespan of cycles 2 to n + 2, and the values 
1,...,

min i
i n

l
=

 and 

1,...,
min i

i n
u

=
 are the LBs for C1 and Cn+3, respectively. Thus, the proof is completed.□ 

Another constructive algorithm is based on the insertion heuristic. When one job has to 
be added to the current sequence, every unscheduled job will be inserted in each possible 
position of the current sequence and the combination of the job and the position with the 
minimum makespan is chosen. This constructive algorithm based on greedy insertion is 
called constructive algorithm greedy insertion (CAGI). 

4.1.1 CAGI algorithm 

N is a set containing all jobs; N = {1, 2, …, n}. S is a set containing jobs which have been 
sequenced, and R is a set containing jobs which have not been sequenced. MS is a 
variable to record the current makespan. 

Step 1 Let MS be a big number, R = N and S = ∅. 
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Step 2 Schedule job k where 1 2
1, ,

arg min { }.j j j j
j n

k l p p u
=

∈ + + +
K

 Let S = {k} and  

R = N\{k}. 

Step 3 For each job j in R, insert it in each position i of S where i = 1,…, |S|+1. Let the 
corresponding makespan be MSij where MSij can be obtained as follows: 

{ } { }
{ } { }
{ } { }

[ 1] [ 2]2 [ 3] 2 [ 1]2 [ 2] [ ]

[ ]1 2 [ 1] [ 1] [ 1]1 [ ]2 [ 2]

[ 1]1 [ 2]2 [ 3] [ ] [ ]1 [ 1]2 [ 2] [ 1]

[ 1]1 [ ]2 [

max , , max , ,

max , , max , ,

max , , max , ,

max , ,

ij i i i j j i i i

i j i i i i j i

i i i i i i i i

i i i

MS MS p p u l p p u l

p p u l p p u l

p p u l p p u l

p p u

− − − − −

− + + +

− − − − − +

+ −

= + + + +

+ + + +

− + − +

− { } { }1] [ 2] [ 2]1 [ 1]2 [ ] [ 3]max , ,i i i i il p p u l+ + + ++ − +

 

where 

[| | 1] [| | 2] [| | 3] [0]1 [| | 1]1 [| | 2]1 [ 1]2 [0]2

[| | 1]2 [ 2] [ 1] [0]

 
0.

S S S S S

S

l l l p p p p p
p u u u

+ + + + + −

+ − −

= = = = = = =

= = = = =
 

Step 3.1 if MS < MSij, then MS = MSij and Let job j be f and position i be g. 
Step 3.2 if j = |R| and i = |S|+1, then insert job f in position g of sequence S, 

and R = R \ {f} 

Step 4 If R ≠ ∅, go to Step 3. Otherwise, go to Step 5. 

Step 5 Output the job sequence, S and the makespan, MS. 

Similar to Lemma 1, if the cycle times from cycles 2 to n+2 are determined by the 
loading and unloading times, the summation of the loading and unloading times will 
provide a LB to an optimal makespan as follows. 

Lemma 2. The value, 
1
( ),

n
j jj

l u
=

+∑  is a LB for the makespan problem in a  

T-line machining centre with two CNC machines. 

Proof: When neglecting the processing times in cycles 2 to n+2, each cycle length is 
determined by the loading and unloading times so that the summation of the loading and 
unloading times is a LB. □ 

In addition, a new LB which provides a tighter bound for any sequence can be derived 
from Lemma 1 and Lemma 2. 

Theorem 1. The value, ( ){ }11,..., 1,...,
max min min ,  ,

n
i GG i j jji n i n

l MS u l u
== =

+ + +∑  is a LB for the 

makespan problem in a T-line machining centre with two CNC machines. 

Proof: Derived directly from Lemmas 1 and 2. □ 

4.2 Modified neighbourhood search algorithm 

After generating a seed, a better solution or sequence can be searched for improving the 
current makespan. Typically, neighbourhood solutions of the seed are generated and 
explored. Then, the sequence with the smallest makespan among these neighbourhood 
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sequences is selected as the seed for next iteration of the improvement stage. The 
procedure does not terminate until a further improved sequence cannot be found. The 
technique for the search algorithm is referred to as Neighbourhood Search. It is important 
to determine the method of generating neighbourhood solutions in the search algorithm, 
because the larger the number of candidate solutions explored, the better the 
improvements that can be obtained. One of mechanisms to generate neighbourhood 
sequences is known as adjacent pairwise interchange, which is based on switching pairs 
of adjacent jobs. In the proposed algorithm, not only the adjacent pairwise interchange is 
adopted, but also pairwise interchange of any two jobs is considered. 

One of the weaknesses of the neighbourhood search algorithm is that the current 
solution may be trapped in a local optimum so that no better neighbour can be found with 
respect to the current seed. In order to escape from a local optimum, a mechanism to 
increase the diversification of the search region is incorporated into the neighbourhood 
search algorithm. If no more improvements can be found in the neighbourhood region of 
the current seed, a neighbourhood sequence with the identical makespan as the current 
seed is selected as the new seed (ties are broken arbitrarily). The pairwise interchange of 
jobs and the rule of escaping from a local optimum comprise the basic structure of the 
algorithm in the improvement stage. The modified neighbourhood search (MNHS) 
algorithm is explained in detail in the rest of this section. 

4.2.1 MNHS algorithm 

Let B denote the current best sequence and MS(S) represent the makespan of sequence S. 
R is a set containing the sequences with identical makespan as the current seed. Counter 
is an index to record the number of random selections that have been performed. PARA 
is a parameter to determine the maximum number of random selections that can be 
executed. 

Step 1 Let the sequence obtained from the constructed stage be the initial seed S and set 
Counter = 1 and R = ∅. 

Step 2 Initialise MS(B) = ∞ and sequence S’ obtained by adjacent pairwise interchange 
on S. MS(S’) is computed by using equation (A.1) from Appendix. 
Step 2.2 If MS(S’) < MS(B), then set B = S’ and MS(B) = MS(S’). 
Step 2.3 If MS(S’) = MS(S), then R = R ∪ {S’}. 

Step 3 If MS(B) < MS(S), then set S = B, R = ∅, Counter = 1, and go to Step 2. 
Otherwise, go to Step 4. 

Step 4 Initialise MS(B) = ∞ and generate sequence S’ by swapping the positions of jobs 
i and j where i = 1 to n – 2 and j = i + 2 to n. Compute MS(S’) using  
equation (A.2) from Appendix. 
Step 4.1 If MS(S’) < MS(B), then set B = S’ and MS(B) = MS(S’). 
Step 4.2 If MS(S’) = MS(S), then R = R ∪ {S’}. 

Step 5 If MS(B) < MS(S), then set S = B, R = ∅, Counter = 1, and go to Step 2. 

Step 6 If Counter < PARA and R ≠ ∅, then randomly select a sequence from R as new 
seed S, set R = ∅, Counter = Counter + 1, and go to Step 2. Otherwise go to 
Step 7. 
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Step 7 Output sequence S and makespan MS(S). 

Given an initial seed, a series of adjacent pairwise interchanges is performed to generate 
a list of new sequences. Through the interchange of jobs, the sequence with the smallest 
makespan becomes a new seed for the next iteration. However, if no better sequence is 
obtained, the general pairwise interchange is applied, which swaps any two jobs. The 
total number of possible sequences of a seed explored is n(n – 1) / 2. 

If no improved sequence can be obtained after performing these two interchange 
schemes, remedial method is adopted to increase the diversification of the search 
algorithm which randomly selects a sequence from set R as a new seed. In addition, 
variable Counter records the number of the random selections that have been performed 
and the random selection is executed repeatedly until the counter reaches a predefined 
parameter (PARA) or set R is empty. In this condition, the whole improvement stage is 
terminated, and the current sequence and the corresponding makespan are reported. 

4.3 Computational study 

In order to evaluate the performance of the proposed heuristic algorithms, a series of 
experiments is conducted. The two constructive algorithms, CAGG and CAGI, are 
combined with the MNHS algorithm to form two two-phase algorithms. These heuristic 
algorithms are named CAGG_M and CAGI_M, respectively. These heuristic algorithms 
and the DP algorithm have been implemented in Borland C++ 5.5 to perform the 
computational experiments. 

Three different scenarios are examined with respect to the loading, processing, and 
unloading times. Scenario I assumes the expected values of the summation of loading and 
unloading times of a job is equal to the expected values of its processing times. Scenario 
II assumes the expected values of processing times of a job are greater than the expected 
value of the summation of its loading and unloading times. The setting for Scenario III is 
opposite to the setting for Scenario II. All the loading, processing, and unloading times 
are randomly generated by using discrete uniform distributions. In addition, for each 
scenario, three problem sizes are considered; 10, 17 and 40 jobs for small-, medium-, and 
large-size problems, respectively. The number of jobs for medium-size problems is set to 
17 because 17 is the maximum number of jobs that can be optimally scheduled by the 
proposed DP algorithm due to the memory constraint. In addition, parameter PARA in 
the MNHS algorithm is set to 10,000. The experimental setting and the rules to generate 
the testing data are summarised in Table 2. 
Table 2 Experiments and data generating rules 

 Small size Medium size Large size 
Number of jobs (n) 10 17 40 
Scenario I (lj, pj1, pj2, uj) = (U(1,7), U(1, 11), U(1, 11), U(1, 3)) 
Scenario II (lj, pj1, pj2, uj) = (U(1,7), U(1, 15), U(1, 15), U(1, 3)) 
Scenario III (lj, pj1, pj2, uj) = (U(1,10), U(1, 11), U(1, 11), U(1, 4)) 

Note: *U denotes the discrete uniform distribution and all operation times are integer. 

Ten runs have been executed for each scenario. All test problems except for the  
medium-size problems with the DP algorithm have been run on a Pentium 1.40 GHz PC 
with 1 GB RAM. The medium-size problems with the DP algorithm have been carried 
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out on an Intel Core 2 Duo 1.6GHz PC with 3 GB RAM. There are 90 instances tested for 
the two proposed heuristics. For small- and medium- size problems, optimal solutions 
have been obtained by the proposed DP algorithm. For large-size problems, however, 
only LB values derived from Theorem 1 can be used to compare the accuracy of the 
heuristic solutions. The average makespans and CPU times on ten runs for all instances 
tested are summarised in Table 3. Table 4 illustrates the average relative errors, which are 
the average percent deviations of the makespans obtained by these algorithms with 
respect to the optimal solutions, if available, or the LBs. 
Table 3 Summary of average makespans and CPU times obtained by the DP and heuristics, 

and average LB 

Scenario n 
DP  CAGG_M  CAGI_M 

LB 
Optimum Time  S1 S2 Time  S1 S2 Time 

I 10 81.2 0.24  89.3 82 0.16  83 82.2 0.16 77.5 

17 126.5 201.2  143.6 129.4 0.42  130.7 129.2 0.42 122.2 

40 – –  309.2 271.1 1.98  279.8 270.5 1.98 254.7 

II 10 99.8 0.20  106.4 101.4 0.15  101.8 100.9 0.17 95.7 

17 161.7 200.6  170.9 164.2 0.39  166.4 163.2 0.33 158.2 

40 – –  378.9 355 1.89  361.5 354.2 1.94 344.6 

III 10 84.8 0.19  95.3 86.6 0.20  86.1 85.4 0.15 81.7 

17 142 202.0  161.9 143.6 0.40  146.4 142.9 0.38 141 

40 – –  374 325.4 1.74  331.9 324.2 1.69 321.7 

Notes: S1: the constructive stage; S2: the improvement stage 

Table 4 Summary of average relative errors from optimum and LB 

Scenario n 

RE from optimum (%)  RE from LB (%) 

CAGG_M  CAGI_M  CAGG_M  CAGI_M 

S1 S2  S1 S2  S1 S2  S1 S2 

I 10 10.14 1.05  2.27 1.25  15.49 5.93  7.24 6.16 

17 13.69 2.33  3.37 2.18  17.79 6.00  7.08 5.86 

40 – –  – –  21.50 6.47  9.93 6.25 

II 10 6.66 1.63  2.07 1.15  11.30 6.04  6.50 5.53 

17 5.89 1.64  3.00 0.97  8.41 4.04  5.46 3.36 

40 – –  – –  10.06 3.07  4.93 2.82 

III 10 12.41 2.22  1.56 0.72  16.89 6.30  5.60 4.71 

17 14.11 1.23  3.17 0.70  15.08 2.09  4.04 1.54 

40 – –  – –  16.40 1.21  3.25 0.82 

The relative errors of the makespans obtained by the two proposed algorithms (CAGG_M 
and CAGI_M) with respect to the optimal solutions are 2.33% and 2.18% (n = 17 in 
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Scenario I) and with respect to the LBs are 6.47% and 6.25% (n = 40 in Scenario I). 
Moreover, optimal sequences can be found in most runs in Scenarios II and III, especially 
when the number of jobs is equal to 17. With respect to the constructive stage, the 
sequences formed by CAGI have much smaller makespan values than those obtained by 
CAGG. The MNHS algorithm significantly improves the makespan values given initial 
sequences. Regarding the computational effort, the CPU time is not a concern to solve 
large-size problems by the proposed algorithms. Computational results indicate that the 
two-phase algorithm (CAGI_M), which combines the insertion heuristic in the 
constructive phase and the MNHS algorithm in the improvement phase, is applicable to 
solve the makespan problem for a two-machine T-line machining centre. 

Furthermore, the LB derived from Theorem 1 provides a good insight on the optimal 
makespan when the optimum is unavailable. When the processing times, on average, are 
larger than the loading and unloading times (Scenario II), the relative errors for the 
heuristic solutions computed with respect to the LBs decrease as the number of jobs 
increases. The similar trend can be also observed in Scenario III. 

5 Conclusions 

In this research, a new flow shop scheduling problem with the makespan criterion has 
been studied. In the problem, jobs are loaded and unloaded to the machining centre at the 
same station and are transported to next corresponding machines simultaneously by a 
rotary table. A DP algorithm has been formulated to solve small- and medium- problems 
optimally and two-phase heuristic algorithms have been proposed to solve large-scale 
problems. LB values for these problems are also provided. The computational study 
shows that the CAGI_M algorithm, which combines the greedy insertion and the MNHS 
algorithm, generates a sequence in two seconds within 6.25% on the average from a LB 
when the number of jobs is 40. 

In a T-line machining centre with two CNC machines, heuristic algorithms have been 
finding near optimal solutions for the makespan problems. Therefore, finding optimality 
conditions or particular properties for special cases are promising research directions. For 
example, if the unloading times to be zero, then the problem becomes a three-machine 
flow shop problem with synchronous transfer which has been studied by Soylu et al. 
(2007). The complexity of this version of the problem can be further investigated. 
Moreover, a problem with constant loading and unloading times is also similar to the 
three-machine flow shop problem with synchronous transfer, but the first and last two 
cycles should be addressed with additional considerations. 

Another special case in a two-machine T-line machining centre could assume that the 
processing times of one machine dominate the processing times of the other machine. 
The assumption means the minimum processing times of one machine is greater than or 
equal to the maximum processing times of the other machine. Due to the mechanism of 
synchronous material movement, only the maximum operation time constitutes the time 
period of each cycle. For example, if the processing times on machine 1 dominate the 
processing times on machine 2, then the operation on machine 2 can be always neglected 
except the second last cycle (cycle n+2) because its cycle time (Cn+2) is equal to 
max{p[n]2, u[n–1]}. Therefore, this special case is similar to the problem with one machine. 
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Appendix 

The following equation calculates the makespan of sequence S’ obtained in Step 2.1 of 
the MNHS algorithm: 

{ }
{ } { }
{ } { }

4
[ 1]1 [ 2]2 [ 3] [ ]1

[ 1]1 [ 2]2 [ 3] [ 1] [ 1]1 [ 1]2 [ 2] [ ]

[ ]1 [ 1]2 [ 1] [ 2] [ 2]1 [ ]2 [ 1] [ 3]

[ 3]1 [ 2]2 [ ]

( ') ( ) max , ,

max , , max , ,

max , , max , ,

max , ,

i
j j j jj

i i i i i i i i

i i i i i i i i

i i i

MS S MS S p p u l

p p u l p p u l

p p u l p p u l

p p u

+
− − −

=

− − − + + − −

+ − + + + +

+ +

= − +

+ + + +

+ + + +

+

∑

{ }[ 4] ,il ++

 (A.1) 

where 
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The following equation calculates the makespan of sequence S’ obtained in Step 4.1.1 of 
the MNHS algorithm: 
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{ } { }
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{ }

3
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and Q and V are computed as follows: 

If j = i+2, 
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