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Abstract: Bridge vehicular load effect inference is one of the key factors in 
bridge reliability and life-cycle assessment. The stochastic vehicular load can 
be decomposed into two parts: 1) the random vehicular inflow, describing the 
information about the properties of the inflow vehicles entering the bridge;  
2) the stochastic vehicular flow, describing the information about the  
vehicle-following pattern of vehicles on the bridge. In order to investigate how 
the bridge load effect is affected by the stochastic vehicular load, two key 
parameters of the stochastic vehicular load are selected: 1) the probability of 
the existence of vehicle (PoV), controlling the traffic volume of the vehicular 
inflow entering the bridge; 2) the probability of random slowing down (PoSD), 
controlling the vehicle-following pattern of the stochastic vehicular flow. With 
different values of the PoV and the PoSD, the samples of the vehicular load 
effects are achieved by embedding the samples of the stochastic vehicular load 
and the influence lines of the load effects. The Gaussian process regression 
(GPR) is utilised to obtain the relations between two parameters of the 
stochastic vehicular load (the PoV and the PoSD) and the statistical moments 
[the mean and the standard deviation (STD)] of the simulated load effect 
samples. It turns out that the load effect is interactively influenced by the PoV 
and the PoSD. 

Keywords: bridge vehicular load effect; Gaussian process regression; GPR; 
Nagel-Schreckenberg model; uncertainty. 
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1 Introduction 

Bridge vehicular load effect inference is one of the key factors in bridge reliability and 
life-cycle assessment (Obrien et al., 2015), although many researches have been devoted 
to the load effect inference, most of them achieved the load effect based on  
over-simplified models of the vehicular load (Chen et al., 2010; Jiang, 2011). Inaccurate 
predictions on bridge load effects, especially for medium- or long-span bridges, might be 
achieved due to this over-simplification (Obrien et al., 2015). 

The stochastic vehicular load can be decomposed into two components: the random 
vehicular inflow and the stochastic vehicular flow. The vehicular inflow component 
describes the information about the properties of the inflow vehicle entering the bridge, 
including the traffic volume, the vehicle weight and the vehicle entrance velocity. The 
traffic volume is a direct measure of the number of vehicles entering the bridge at 
different times. The vehicle weight includes the information about total vehicle weight, 
vehicle axle weights, vehicle axle lengths and inter-vehicle distances of each vehicle. The 
vehicle entrance velocity records the initial velocity of each vehicle entering the bridge. 
In practice, the above information can be measured if the bridge weigh-in-motion (WIM) 
sensing system is installed (Obrien et al., 2015). The vehicular flow component describes 
the information about the vehicle-following pattern of vehicles on the bridge. As it is 
difficult to directly measure the vehicular flow, the modelling of it relies on the 
simulation models. These models were developed to describe different aspects of traffic 
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flow, and it can be categorised as microscopic, mesoscopic, and macroscopic modelling 
approaches (Hoogendoorn and Bovy, 2001): 

1 the microscopic model considered the time-space behaviour of individual drivers 
under the influence of vehicles in their proximity 

2 the mesoscopic model considered the behaviour of drivers without explicitly 
distinguishing their time-space behaviour 

3 the macroscopic model considered the collective vehicular flow. 

The microscopic model includes the safe-distance model (May, 1990), the stimulus-
response model (May, 1990; Leutzbach, 1988) and the particle pedestrian model 
(Hoogendoorn and Bovy, 2000a), etc. The mesoscopic model includes the multiclass  
gas-kinetic model (Hoogendoorn and Bovy, 2000b), the multiclass multilane model 
(Hoogendoorn, 1999) and the cluster models (Botma, 1978), etc. The macroscopic model 
includes the LWR model (Lighthill and Whitham, 1955), the Payne-type models (Payne, 
1971, 1979) and the Helbing-type models (Helbing, 1996, 1997), etc. The cellular 
automaton (CA) or the particle hopping model was developed for modelling microscopic 
traffic flow, which was one of the popular methods for traffic flow simulation in recent 
years (Nagel and Schreckenberg, 1992). The most distinctive feature of this model is that 
it is discrete in time, space and states, thus, it is very suitable for simulation. The initial 
version of the CA model used for traffic flow simulation was the Nagel-Schreckenberg 
(N-S) model (Nagel and Schreckenberg, 1992), which was also one of the most important 
CA models. The N-S model can simulate different traffic scenarios in reality, such as 
congestion and phase transition. The N-S model has been utilised for the realistic 
description of stochastic vehicular flows, and it has been utilised in highway and bridge 
assessment, for instance, the transportation analysis and simulation system developed by 
Los Alamos National Laboratory (Smith et al., 1995) and the online traffic simulation in 
North Rhein Westphalia (Shafizadeh and Mannering, 2006). Further development of the 
N-S model has been proposed for more complex situation of traffic flow, such as  
two-lane traffic flow based on different lane-changing methods (Kong et al., 2006; 
Caprani et al., 2016). 

In the previous researches of using the N-S model to simulate the stochastic vehicular 
flow in bridge response analysis, it was found that the bridge load effects were related to 
the parameters of both the random vehicular inflow and the stochastic vehicular flow 
(Caprani et al., 2016; Yin et al., 2016; Mu et al., 2018). In order to investigate how the 
bridge load effect is affected by the stochastic vehicular load, two key parameters of the 
stochastic vehicular load are selected: 

1 the probability of the existence of vehicle (PoV), controlling the traffic volume of the 
vehicular inflow 

2 the probability of random slowing down (PoSD), controlling the vehicle-following 
pattern of the stochastic vehicular flow. 

With different values of the PoV and the PoSD, the samples of the vehicular load effects 
can be achieved by embedding the samples of the stochastic vehicular load and the 
influence lines of the load effects. In order to explore the relations between two 
parameters of the stochastic vehicular load (the PoV and the PoSD) and the statistical 
moments [the mean and the standard deviation (STD)], the Gaussian process regression 
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(GPR) is utilised in this study. The GPR is a popular machine learning algorithm for 
regression (O’Hagan and Kingman, 1978; Mackay, 1997; Rasmussen, 2004; Chu and 
Ghahramani, 2005). Different from the traditional regression methods based on the 
polynomial functions of the input variables, the GPR models the data by the kernel 
functions of the input variable and makes prediction by the data-driven mean function 
and covariance function. Thus, it provides a more flexible solution for data fitting with 
reliable fitting capability in modelling complex systems. This powerful tool has been 
applied in the field of structural health monitoring (Surace et al., 2014; Corrado et al., 
2015; Wan et al., 2017). 

The structure of this paper is outlined as follows: Section 2 describes the simulation 
of the random vehicular inflow and the stochastic vehicular flow of the stochastic 
vehicular load model. Section 3 introduces the GPR for data fitting and prediction. 
Section 4 is the simulated example, with exploring the relations between the PoV along 
with the PoSD of the stochastic vehicular load and the mean and the STD of the load 
effect of a beam structure. 

2 Stochastic vehicular load: random vehicular inflow and stochastic 
vehicular flow 

Table 1 shows parameters of random vehicular inflow simulation. Recall that there are 
three factors governing the inflow, including the traffic volume, the vehicle weight and 
the vehicle entrance velocity. The traffic volume is described by the PoV, which is the 
direct measure of how probable of the existence of a vehicle in each time step. In order to 
investigate how the load effects are affected with changing the PoV, the values of the 
PoV are taken from 0.1 to 1.0 with 0.1 increasement. Note that PoV equal to 1.0 means 
that there is a vehicle existing at the entrance position of the bridge in each time step. As 
this study focuses on the influence of the traffic volume (i.e., the PoV) to the load effects, 
each vehicle is simplified as a point load with the identical weight (i.e., 10,000 N) and the 
entrance velocity (i.e., 0 m/s). 

After generating the vehicles according to the vehicular inflow simulation, each 
vehicle moves according to the stochastic vehicular flow based on the N-S model. 
Discretisation in time and traffic lane is assumed. The time step is taken to be 1 sec and 
the traffic lane of the bridge is divided into a set of cells with each cell-length being 2 m. 
Each cell is either empty without any vehicle or occupied by a single vehicle. In each 
time step, each vehicle moves from one cell to another. Let vi(t), li(t) and di,i+1(t) be the 
velocity, position, and inter-vehicle distance between the front vehicle (i.e., (i + 1)th 
vehicle) and the target vehicle (i.e., ith vehicle), respectively. From time step t to t + 1, the 
vehicle-following pattern is modelled by four processes (acceleration, deceleration, 
random slowing down, position updating), so the position of the ith vehicle is updated as 
follows: 
Table 1 Parameters of random vehicular inflow simulation 

Parameter Value 

PoV 0.1:0.1:1.0 
Total vehicle weight 10,000 N 
Vehicle entrance velocity 0 m/s 
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1 Acceleration 

{ }( 1/ 3) ( ) ,i i acc maxv t min v t v v+ = +  (1) 

2 Deceleration 

{ }, 1( 2 / 3) ( 1/ 3), ( )i i i iv t min v t d t++ = +  (2) 

3 Random slowing down with the PoSD 

{ }( 1) ( 2 / 3) , 0i i decv t max v t v+ = + −  (3) 

4 Position updating 

( 1) ( ) ( 1)i i il t l t v t+ = + +  (4) 

Table 2 Parameters of the N-S model 

Parameter Value 

PoSD 0.1:0.1:0.9 
Maximum velocity limit 30 m/s 
Velocity acceleration limit 2 m/s 
Velocity deceleration limit 2 m/s 

In the acceleration process, if the accelerated velocity of the ith vehicle is smaller than 
vmax (the maximum velocity limit), the velocity increases by vacc (velocity acceleration 
limit). In the deceleration process, checking is performed on whether the updated position 
of the ith vehicle is in the same cell of its front vehicle (i.e., the (i + 1)th vehicle). If no, 
then the position of the ith vehicle is updated; if yes, then the position of the ith vehicle is 
in the rear cell of the (i + 1)th vehicle. In the random slowing down process, the velocity 
is decreased by vdec (velocity deceleration limit) with the PoSD. Finally, the position of 
the ith vehicle is updated. Table 2 shows the parameters of the N-S model. In order to 
investigate how the load effects are affected with changing the PoSD, the values of the 
PoSD are taken from 0.1 to 0.9 with 0.1 increasement. Note that the PoSD directly 
controls how probable of a vehicle takes the slow down action of equation (3) in each 
simulation. As a result, the smoothness of the traffic state depends on both the PoSD and 
the PoV. The maximum velocity limit is 30 m/s (i.e., 108 km/h speed limit), the 
acceleration and deceleration limit are 2 m/s. By the above two components, the samples 
of the stochastic vehicular load samples can be achieved. Then, different load effects of 
the target structure can be calculated by the influence lines along with the vehicular load 
samples. 

3 Gaussian process regression 

Consider an input-output model: 

( )y f ε= +x  (5) 
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where x ∈ xNR  is the input; y ∈ R  is the output; ε ~ G(0, 2
yσ ) is the noise following the 

zero-mean Gaussian distribution; and f(.) is the predicting function. In the GRP, the 
covariance structure cov[yi, yj, | xi, xj, θκ, 2

yσ ] of two noisy outputs yi and yj is defined as 
(O’Hagan and Kingman, 1978; Mackay, 1997; Rasmussen, 2004; Chu and Ghahramani, 
2005): 

( ) ( )2 2cov , , , , , ,i j i j κ y i j κ y i jy y θ σ k θ σ δ⎡ ⎤ = +⎣ ⎦x x x x x x  (6) 

where xi and xj are the corresponding inputs of yi and yj, respectively; k(xi, xj | θκ) is the 
kernel function conditional on the kernel parameter θκ, representing the correlation 
between the inputs xi and xj; δ(xi, xj = I (xi = xj) is the Kronecker delta. Based a training 
dataset D = {X, Y} with x ∈ xN N×R  and y ∈ ,NR  and given a test input set x* ∈ 

* ,xN N×R  the corresponding probability density function (PDF) output set y* ∈ *NR  can 
be predicted by assuming that the joint follows the zero-mean (N + N*)-dimensional 
multivariate Gaussian distribution (O’Hagan and Kingman, 1978; Mackay, 1997; 
Rasmussen, 2004; Chu and Ghahramani, 2005): 

*

*** *
~ 0,G

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠

Y
T

K KY
K Ky

 (7) 

where the covariance matrix of the training data Ky ∈ N N×R  with its (i, j)th element as 
( ) ( )2, , ;i j y i jk σ δ+x x x x  the covariance matrix between the training data and test data 

K* ∈ *N N×R  with its (i, j)th element as ( ) ( )2
*( ) *( ), , ,i j y i jk σ δ+x xx x  where x*(j) is the jth 

row of x*; and the covariance matrix of the test data K** ∈ * *N N×R  with its (i, j)th element 
as ( ) ( )2

*( ) *( ) *( ) *( ), , .i j y i jk σ δ+x xx x  Finally, the posterior predictive density of y* follows 
the N*-dimensional Gaussian distribution as 

( ) ( )1 1
* * ** ** *, , ~ ,p G − −−T T

Y Yy x X Y K K Y K K K K  (8) 

4 Simulated example 

In this stimulated example, the stochastic vehicular load samples are achieved by 
considering the random vehicular inflow and stochastic vehicular flow components 
presented in Section 2. As the vehicular flow effect is more critical for medium- or  
long-span bridges, a 1,000-m simply supported beam is utilised in the study. Recall that 
the PoV and the PoSD vary according to Tables 1 and 2, respectively. For each  
PoV-PoSD parameter pair, for example, PoV = 0.3 and PoSD = 0.8, 10,000 independent 
sets of samples of the vehicular load are generated, and each sample set is with 100-sec 
time-span. The target load effect in this study is the maximum value of the mid-span 
moment within 100-sec time-span (denoted as max-mid-moment). In order to investigate 
how the time-space evolution of the stochastic vehicular load is affected by different 
values of the PoV and the PoSD, some typical samples of the vehicular time-space 
evolution are achieved as follows. First, the minimum, median, and maximum values of 
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10,000 points of the max-mid-moment are achieved. Second, the vehicular time-space 
evolution samples correspond to the minimum, median, and maximum values of the  
max-mid-moment are selected for demonstration. Figures 1 to 3 show the time-space 
evolution of the stochastic vehicular load of the minimum, median, and maximum values 
of the max-mid-moment, respectively. The horizontal and vertical axes are time instance 
and position of the bridge, and each dot represents a vehicle being on the corresponding 
position of the bridge at the corresponding time instance. The vertical blue line indicates 
the time instance for the max-mid-moment. In Figure 1, it can be observed how the 
number of vehicles on the bridge (NoV) changes as varying the PoV and the PoSD. The 
NoV decreases as the PoSD increases. This is because when the PoSD is large, in every 
simulation each vehicle is with a high probability to decelerate as well as block its rear 
vehicle. It is not surprising that in the extreme case (PoSD = 0.9), majority of vehicles 
stay at the entrance position of the bridge, i.e., the position of the vehicle is unchanged 
after updating. This is because the entrance velocity of each vehicle is equal to 0 m/s, and 
it is very probable that the effects of the first three processes of equations (1) to (3) cancel 
with each other. The NoV increases as the PoV increases. This is reasonable because 
larger value of the PoV leads to high traffic volume (i.e., number of vehicles at the bridge 
entrance). The above conclusions can also be found in Figures 2 and 3. A worth noting 
point is that traffic congestion can be observed in Figure 3. This validates the capability 
of the N-S model in modelling the smoothness of the traffic state. 

Figure 1 Time-space evolution of the stochastic vehicular load of the minimum value of the  
max-mid-moment (see online version for colours) 
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Figure 2 Time-space evolution of the stochastic vehicular load of the median value of the  
max-mid-moment (see online version for colours) 

 

Figure 3 Time-space evolution of the stochastic vehicular load of the maximum value of the 
max-mid-moment (see online version for colours) 
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Figure 4 shows plot and normalised histograms of the max-mid-moment samples with 
fixing the PoV and varying the PoSD. It can be seen that the normalised histograms 
corresponding to different values of the PoV and the PoSD change significantly. When 
the PoV is fixed and the PoSD increases the lower bound of the histogram decreases 
while the upper bound of the histogram increases and then decreases. In addition, the 
shape of the normalised histograms derivates dramatically. Figure 5 shows plot and 
normalised histograms of the max-mid-moment samples with fixing the PoSD and 
varying the PoV. Again, changing on the normalised histograms can be observed, but the 
trends of the upper and lower bounds are more complex. Note that the max-mid-moment 
depends on not only the NoV but also the position of every vehicle on the bridge, and 
these two factors depend on the stochastic process parametrised by the PoV and PoSD. 

Figure 4 Plot and normalised histograms of the max-mid-moment samples with fixing the PoV 
and varying the PoSD, (a) PoV = 0.3 with PoSD = 0.1:0.1:0.9 (b) PoV = 0.6 with  
PoSD = 0.1:0.1:0.9 (c) PoV = 0.9 with PoSD = 0.1:0.1:0.9 (see online version  
for colours) 

 Projection of samples Normalised histogram of samples 

(a) 

PoV = 0.3 

  

(b) 

PoV = 0.6 

  

(c) 

PoV = 0.9 
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Figure 5 Plot and normalised histograms of the max-mid-moment samples with fixing the PoSD 
and varying the PoV, (a) PoSD = 0.3 with PoV = 0.1:0.1:1 (b) PoSD = 0.6 with  
PoV = 0.1:0.1:1 (c) PoSD = 0.9 with PoV = 0.1:0.1:1 (see online version for colours) 

 Plot of samples Normalised histogram of samples

(a) 

PoSD = 0.3 

  

(b) 

PoSD = 0.6 

  

(c) 

PoSD = 0.9 

   

The GPR is utilised to analyse the above input-output dataset D = {X, Y} with 10,000 
points, containing the input dataset X: the PoV and the PoSD, and the output dataset Y: 
the max-mid-moment. In order to select the optimal kernel function and obtain the 
optimal values of the parameters, the mean squared error is utilised for the loss function. 
After the five-fold cross validation (Bishop, 2006), the squared exponential kernel 
function is selected for prediction. Figure 6 shows measured values versus GPR-based 
predicted values for the mean and STD of the max-mid-moment. It can be seen that the 
GPR gives good fitting accuracy. Figure 7 shows GPR-based prediction of the mean of 
the max-mid-moment. It can be observed that when the PoSD is fixed and the PoV 
increases, the mean of the max-mid-moment increases. When the PoSD increases, the 
increasing rate of the mean of the max-mid-moment becomes slower with increasing the 
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PoV. When the PoSD reaches around 0.85, the increasing rate of the mean of the max-
mid-moment is very slow even though the PoV increases. When the PoV is fixed with 
being larger than around 0.4 and the PoSD increases, the mean of the max-mid-moment 
increases and then decreases. When the PoV is smaller than around 0.4, the changing rate 
of the mean of the max-mid-moment is slow even though the PoSD increases. Figure 8 
shows GPR-based prediction of the mean of the max-mid-moment. It can be observed 
that when the PoSD is fixed and the PoV increases, the STD of the max-mid-moment 
increases. When the PoSD decreases, the increasing rate of the STD of the max-mid-
moment becomes slower with increasing the PoV. When the PoV is fixed with being 
larger than 0.45 and the PoSD increases, the STD of the max-mid-moment increases and 
then decreases. When the PoV is smaller than 0.45, the STD of the max-mid-moment 
increases as the PoSD increases. From the results shown in Figures 7 and 8, it turns out 
that the load effect is interactively influenced by the PoV and the PoSD: 

1 The load effect depends on the NoV, the position of each vehicle on the bridge, and 
the smoothness of the traffic state. 

2 The PoV controls the number of vehicles waiting at the entrance position of the 
bridge and the PoSD controls the number of vehicles driving onto the bridge. Larger 
PoV leads to larger NoV but large PoSD introduces traffic congestion at the bridge 
entrance and prohibits the vehicles driving onto the bridge. 

3 The position updating of each vehicle on the bridge depends on the smoothness of 
the traffic state, and the smoothness depends on both the PoV and the PoSD. Larger 
PoV and PoSD lead to higher probability of the existence of traffic congestion. If 
traffic congestion happens, the vehicles are prohibited to leave the bridge, leading to 
larger NoV. As a result, the corresponding max-mid-moment is large. 

Figure 6 Measured values versus GPR-based predicted values of the max-mid-moment, (a) mean 
(b) STD (see online version for colours) 

  
(a) (b) 
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Figure 7 GPR-based prediction of the mean of the max-mid-moment, (a) 3D surface (b) contour 
(see online version for colours) 

 

  
(a) (b) 

Figure 8 GPR-based prediction of the STD of the max-mid-moment, (a) 3D surface (b) contour 
(see online version for colours) 
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5 Conclusions 

A parametric study of bridge load effect under stochastic vehicular load is conducted. 
The stochastic vehicular load is decomposed into the random vehicular inflow and the 
stochastic vehicular flow. Two key parameters (the PoV and the PoSD) of the stochastic 
vehicular load are selected. With different values of the PoV and the PoSD, the simulated 
samples of the vehicular load effects are achieved. A 1,000-m simply supported beam 
with the target load effect as the maximum value of the mid-span moment within 100-sec 
time-span is studied. The GPR, with good fitting capability, is utilised to obtain the 
relations between two parameters of the stochastic vehicular load (the PoV and the 
PoSD) and the statistical moments (the mean and the STD) of the simulated samples of 
the max-mid-moment. It turns out that the load effect depends on the NoV, the position 
of each vehicle on the bridge, and the smoothness of the traffic state. These factors are 
interactively influenced by the PoV and the PoSD. 
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