Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in ariab mining district, red sea hills, Sudan

  • Authors

    • Ahmed Ali Universiti Teknologi Malaysia (UTM)
    • Amin Pour Universiti Teknologi Malaysia (UTM)
    2014-06-17
    https://doi.org/10.14419/ijbas.v3i3.2821
  • This study used the ability of remote sensing technology to identify and map the lithological units and alteration zones in a gold mining area in North-eastern Sudan by using Landsat 8 data source. The Landsat data series has been used widely in mapping lithological and altered rocks and in geology in general. The study area contains three gold mines part of Ariab mining district in Red Sea Hills, Northeastern Sudan. There are three types of gold deposits in the study area (Supergene deposits, polymetallic massive sulphide deposits and The Ganaet deposits) are being mined in Hadal Auatib mine, Hassai mine and Kamoeb mine. The objective of this study was to find new high potential areas for gold mineralization in the area. Conventional image processing methods such as (color composite, principle component analysis and band ratio) and minimum noise fraction have been used in this study for the purpose of lithological and alteration zones mapping. The visible and short infrared region was useful for mapping the iron oxides and the clay minerals, in which the thermal bands were used for silicate mapping. The results of this study showed the distribution of the lithological units and the hydrothermal alteration zones along with new high potential areas for gold mineralization which can be used in the future and proved the ability of Landsat data in mapping these feature.

    Keywords: Landsat-8 Data, Alteration, Lithological Mapping, Gold Exploration, Arabian-Nubian Shield.

  • References

    1. Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore GeologyReviews 14, 157–183.
    2. Hunt, G. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42, 501-513.
    3. Hunt G, R. and Ashley, P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74, 1613-1629.
    4. Clark, R.N., King, T.V.V., Klejwa, M. and Swayze, G.A. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12653-12680.
    5. Cloutis, E.A. (1996). Hyperspectral geological remote sensing: evaluation of analytical techniques. International Journal of Remote Sensing, 17 (12), 2215-2242.
    6. Dehnavi, G. A., Srikhani, R., & Nagaraju, D. (2010). Image procesing and analysis of mapping alteration zones in environmental research, East of Kurdistan, Iran. World Applied Sciences Journal, 11(3), 278-283.
    7. Pour, B.A., Hashim, M (2011 a). Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences 42, 1309-1323.
    8. Aye, F., Cheze, Y., El-Hindi, M., 1985. Discovery of a major massive sulfide province in northeastern Sudan. In: Proceedings Conference on Prospecting in Areas of Deseart Terrains, Rabat, Morocco, pp. 43-48.
    9. Cottard F, Braux C, Cortial P, Deschamps Y, El Samani Y, Hotitn, AM, and Omar Younis M. 1986. Les amas sulfurés polymétalliques et les minéralisations aurifères du district d’Ariab (Red Sea Hills, Sudan). Historique de la découverte, cadre géologique et principaux caractères des gisements. Chron. Rech. Min. no.483, pp.19-40.
    10. Bakheit, A.K., Matheis, G., 1993. Gold-productive volcanogenic sulphide mineralization in the Ariab Belt, Red Sea Hills, Sudan: Evidence for Late Proterozoic seafloor hydrothermal systems. In: Thorweiehe U., Schandelmeier, H. (Eds.), Geoscientific Reseasrch in Northeast Africa. Balkema, Roterdam, pp. 533-540.
    11. Wipfler, E.L., 1994. Geochemische, strukturelle und erzmikroskopische Untersuchungen zur Lagerstattenentwicklung des westlichen Ariab Nakasib Belt, Red Sea Provinz, NE Sudan. Berliner Geowissenschaften Abhandlungen 166, 206p.
    12. Goldsmith, R., Kouther, J.H., 1971. Geology of the Mahd adh Dhahab Umm ad Damar area, Kingdom of Saudi Arabia. Direcorate General of Mineral Resources, Kingdom Saudi Arabia Mineral Resources Bulletin 6, 20p.
    13. Abdelsalam, M. and Stern, R. (2000). Mapping gossans in arid regions with Landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea. Journal of African Earth Sciences, 30(4), 903-916.
    14. Johnson PR (1994) The Nakasib suture: a compilation of recent information about a Sudanese fold and thrust belt, and implications for the age, structure, and mineralization of the Bi’r Umq suture, Kingdom of Saudi Arabia. Ministry Petrol Mineral Res, Kingdom of Saudi Arabia, Open-File Rep USGS-OF-94–6, 44 pp.
    15. Hume, W.F., 1937. Geology of Egypt, Vol. II the Fundamental Pre-Cambrian Rocks of Egypt and the Sudan, their Distribution, Age and Character, Part Ill. The Minerals of Economic Value. Government Press, Cairo, 300p.
    16. Abdelsalam,M.G., Stern, R.J., 1996. Sutures and Shear Zones in the Arabian-Nubian Shield. Journal of African Earth Sciences 23, 289–310.
    17. GRAS, 1990. Base metal in the Sudan, GRAS Rep. Sudan.
    18. Mansour (A.O.), Samuel (A.)- Geology and hydrogeology (sheet 66-A-Rashad) & (sheet 66-E-Talodi). Geol. Surv. Dept., Reg. Geol., Mem., 1. 1957. 48p.
    19. Gabert, V. G., Ruxton, B. P. and Venzlaff, H. , 1960. Uber Untersuchungen in Kristallin der Nordlichen Red Sea Hills in Sudan, Geologisches Jahrbuch, Band 77, p. 241-270.
    20. Cottard, F. Deschamps, Y. Bernadet, G. and El Samani, Y. 1986b. Gold deposits of Ariab area. BRGM Rep. No. 86 SDN 110, Khartoum, 55p.
    21. Grove A. 2003b. Kamoeb resource estimate, pit optimization and design and reserve summary. COGEMA internal document.
    22. Abu Fatima Mohamed 2006 (Thèse Doctorat Université Poincaré Nancy) Métallogénèse et evolution géotectonique des amas sulfurés polymétalliques et des gisements d’or associés de la chaine d’Araib-Arbaat (Red Sea Hills NE Soudan).
    23. Stern, R.A. and Lucas, S.B. 1994: U-Pb zircon age constraints on the early tectonic history of the Flin Flon accretionary collage, Saskatchewan; in Current Research 1994-F, Geological Survey of Canada, p. 75–86.
    24. Kujjo, May 2010, APPLICATION OF REMOTE SENSING FOR GOLD EXPLORATION IN THE NUBA MOUNTAINS, SUDAN,(master thesis) Bowling Green State University.
    25. El Khidir, S. O., (2006), Remote Sensing and GIS Applications in Geological Mapping, prospecting for minerals deposits and groundwater Berber Sheet Area, Northern Sudan. (Ph. D. Thesis). Al Neelain University, Khartoum, Sudan.
    26. Amireault, 2006, Technical Report N43-101 on the Hassaï Mine, Sudan. La Mancha Resources Inc.
    27. Roy et al., 2013, Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment 145 (2014), 105–115.
    28. Vanhellemont and Ruddick, 2013, Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145 (2014) 154–172.
    29. Gupta, R. P. (2003), Remote sensing Geology. 2nd edition, Springer, Germany.
    30. Vincent, Robert K., 1997, Fundamentals of Geological and Environmental Remote Sensing, Prentice Hall, Upper Saddle River, NJ, pp. 80-121.
    31. Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev. 32, 275–290.
    32. Rockwell, B. W., Hofstra, A.H., 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1), 218–246.
    33. Pour, B. A., Hashim, M (2011 b). Spectral transformation of ASTER and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. International Journal of the Physical Sciences 6(8), 2037-2059.
    34. Crosta, A. P. and McM. Moore, J.: (1989), Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minais Gerais State, Brazil: A Prospecting Case History in Greenstone Belt Terrain. Proceedings of the 7th (ERIM) Thematic Conference: Remote Sensing for Exploration Geology. Calgary, 2-6 Oct, pp. 11733-1187.
    35. Loughlin, W. P. (1991), Principal Component Analysis for Alteration Mapping. Photogrammetric Engineering & Remote sensing, Vol. 57(9), pp 1163-1169.
    36. Crosta, A. P., and Rabelo, A., 1993. Assessing of Landsat TM for hydrothermal alteration mapping in central western Brazil . Proceedings of Ninth Thematic conference geologic remote sensing Pasadinea, p. 1053-61, California, USA.
    37. Pour, B. A., Hashim, M (2012 b). Identifying areas of high economic-potential copper mineralization using ASTER data in Urumieh-Dokhtar Volcanic Belt, Iran. Advances in Space Research 49, 753-769.
    38. Green, A. A., Berman, M., Switzer, P., and Craig, M. D., 1988, A transformation for ordering multispectral data in terms of image quality with implications for noise removal: IEEE Transactions on Geoscience and Remote Sensing, v. 26, no. 1, p. 65-74.
    39. Boardman, J. W., 1998, automated spectral unmixing of AVIRIS data using convex geometry concepts: in Summaries, Fourth JPL Airborne Geoscience Workshop, JPL Publication 93-26, v. 1, p. 11 - 14.
  • Downloads

    Additional Files

  • How to Cite

    Ali, A., & Pour, A. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences, 3(3), 199-208. https://doi.org/10.14419/ijbas.v3i3.2821