Skip to main content

Open Access The Importance of Scale in Object-based Mapping of Vegetation Parameters with Hyperspectral Imagery

In recent years, object-oriented image analysis has been widely adopted by the remote sensing community. Much attention has been given to its application, while the fundamental issue of scale, here characterized by spatial object-definition, seems largely neglected.

In the case of vegetation parameters like aboveground biomass and leaf area index (LAI), fundamental objects are individual trees or shrubs, each of which has a specific value. Their spatial extent, however, does not match pixels in size and shape, nor does it fit the requirements of regional studies. Estimation of vegetation parameters consequently demands larger observation units, like vegetation patches, which are better represented by variably shaped objects than by square pixels.

This study aims to investigate optimal object definition for biomass and LAI. We have data from 243 field plots in our test site in southern France. They cover a vegetation range from landes to garrigue to maquis, which is considered to be the climax vegetation in the area. A HyMap image covers the area.

The image is subjected to a Minimum Noise Fraction (MNF) transformation, after which it is segmented with ten different heterogeneities. The result is ten object sets, each having a different mean object size. These object sets are combined with the original image with the mean band values serving as object attributes.

Field observations are linked to the corresponding objects for each object set. Using Ridge regression, relations between field observations and spectral values are identified. The prediction error is determined for each object set by cross validation. The overall lowest prediction error indicates the optimal heterogeneity for segmentation.

Results show that the scale of prediction affects prediction accuracy, that increasing the object size yields an optimum in prediction accuracy, and that aboveground biomass and LAI can be associated with different optimal object sizes. Furthermore, it is shown that the accuracy of parameter estimation is higher for object-oriented analysis than for per-pixel analysis.

Document Type: Research Article

Publication date: 01 August 2007

More about this publication?
  • The official journal of the American Society for Photogrammetry and Remote Sensing - the Imaging and Geospatial Information Society (ASPRS). This highly respected publication covers all facets of photogrammetry and remote sensing methods and technologies.

    Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association serving over 7,000 professional members around the world. Our mission is to advance knowledge and improve understanding of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic information systems (GIS), and supporting technologies.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content