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Abstract 

Tri-generation microgrids, also known as combined cooling, heat and power (CCHP) 

microgrids, have the potential to suffice the collective thermal and electrical demands of 

the microgrid residents. However, the energy demand of microgrids cannot be accurately 

predicted. Therefore, in this paper, robust optimization-based modeling for optimal 

operation of tri-generation microgrids is proposed. Uncertainty in cooling, heat, and 

power demands and worst-case realizations of uncertainties are considered. Initially, a 

deterministic problem is formulated which is then transformed into a min-max robust 

counterpart. Finally, a tractable robust counterpart is formulated by using the dual of the 

inner sub-problem. The formulated model is capable of providing feasible solutions for all 

possible realizations of uncertainties in energy demands (within the uncertainty bounds). 

The final tractable robust counterpart is simulated in CPLEX and various uncertainty 

cases are simulated. Simulation results have proved the robustness and effectiveness of 

the proposed optimization strategy.  

 

Keywords: CCHP microgrids, demand uncertainty, microgrid operation, optimal 

operation, tri-generation microgrid, robust optimization 

 

1. Introduction 

Microgrids (MGs) are expected to play a vital role in the transformation of the 

conventional passive distribution system to an active distribution network [1].  MGs have 

the potential to offer several benefits to both the utilities and the customers, which 

includes economic, technical, and environmental benefits. In this regard, combined heat 

and power (CHP) units are one of the most beneficial technologies. Waste heat is used to 

fulfill the heat load demands of the consumers and thus enhances the overall system 

efficiency. Tri-generation, also known as combined cooling, heat and power (CCHP), 

technologies are becoming more desirable and are even more economical due to their 

ability to suffice cooling, heat, and power demands [2]. The efficiency of tri-generation 

systems is up to 60-80%, which is considerably higher than those of conventional power 

systems. Penetration of distributed generators and demand response programs is 

increasing for achieving the fore-mentioned benefits from MGs. This enhanced 

penetration has imposed new challenges to the scheduling of microgrids [3]. Due to the 

significance of uncertainties associated with the energy demands of tri-generation 

microgrids, several researches have been conducted in the recent years. 

Centralized energy management system (EMS) has been used for scheduling of tri-

generation microgrids by [4]. Dynamic optimization and model predictive control have 

been for scheduling in day-ahead and real-time scheduling horizons. A method for 

optimizing all the three types of energies (electricity, heat, and cooling) and their usage in 
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urban areas has been proposed by [5]. The developed optimization strategy has been 

tested in a southern Italian city. The authors in [6], have proposed a two-stage optimal 

planning algorithm for tri-generation microgrids. The objective of the formulation is to 

minimize both carbon emissions and life cycle operation cost of the microgrid. A review 

has been carried out by [7] on planning, scheduling, and control of CCHP systems. Due to 

the dependence of CCHP microgrid performance on design and energy management 

strategies of microgrids, those aspects have been focused by the authors. A study has been 

conducted in [8] for analyzing the impacts of wastes to energy conversion for CCHP 

applications. Both energy level and exergy analysis have been conducted to reveal the 

variation, quality, and quantity of energy in the operation of CCHPs. The authors in [9, 

10] have evaluated the economic impacts of converting conventional power stations to 

CCHPs.  

Various researches have been conducted for managing the uncertainties associated with 

load demands and renewable energy sources in microgrids. Sensitivity analysis has been 

used by authors in [11] for managing uncertainties in microgrids. Fuzzy logic-based 

optimization has been carried out by authors in [12]. A review of stochastic optimization 

techniques used for uncertainty management of microgrids has been carried out in [13]. 

Robust optimization has been used by authors of [14-15] for managing uncertainties 

associated with microgrids. Among the above-mentioned uncertainty management 

techniques, robust optimization and stochastic optimization have gained popularity among 

the microgrids energy management community. Robust optimization has the ability to 

provide immunity against the worst-case realization of uncertainty, in contrast to 

probabilistic immunity provided by stochastic optimization techniques. Detailed merits of 

robust optimization and demerits of stochastic optimization can be found in [14]. 

The models used for energy management of tri-generation microgrids, available in the 

literature, are either deterministic or are based on stochastic optimization. Similarly, most 

of the researches available in the literature on uncertainty management are focused on 

electrical energy management only. Consideration of uncertainties in demand of heat and 

cooling energies is equally important. Due to the coupling of these energies (cooling, 

heat, and electricity), uncertainty management of CCHP systems is more challenging and 

more desirable. Additionally, due to the complexity of stochastic optimization techniques 

and probabilistic guarantee of feasible solutions, these techniques are less attractive. 

Therefore, an attempt has been made in this paper to schedule the resources of microgrids 

considering uncertainties in CCHP demands using robust optimization.  

In this paper, robust optimization-based modeling of CCHP microgrids has been 

carried out. Initially, a deterministic problem has been formulated which is based on 

mixed integer linear programming (MILP). Then a robust counterpart of the initial 

deterministic problem is formulated. The robust counterpart is a min-max problem and is 

non-linear. Therefore, dual of the inner sub-problem has been determined. Finally, a 

trackable robust optimization problem has been formulated. The final problem is mixed 

integer linear programming and has been implemented in CPLEX. Different uncertainty 

cases have been simulated to evaluate the feasibility of the proposed method. Uncertainty 

in electrical load only, uncertainty in heat load only, uncertainty in cooling load only, and 

uncertainty in all the three types of loads have been considered in the simulations.  

 

2. Tri-Generation Microgrids and Demand Uncertainties 

A typical tri-generation microgrid model is shown in Figure 1. Figure 1(a) shows the 

electricity, heating, and cooling networks, which are collectively termed as a physical 

network, of the tri-generation microgrid. It can be observed from Figure 1(a) that 

electricity demand of the microgrid can be fulfilled by using CHPs, renewable energy 

sources (DGs), utility grid, and battery energy storage system (BESS). Similarly, the 

excess of power can be traded with the utility grid or can be stored in the BESS. Heat 
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energy demand of the microgrid can be fulfilled by using CHPs, heat only boilers 

(HOBs), and thermal energy storage system (TESS). Excess of heat will be wasted only 

when TESS is fully charged. The cooling demand of the microgrid can be fulfilled by 

using adsorption chillers (ACHs) or electric heat pumps (EHPs). The 

information/command flow of the tri-generation microgrid model, which is named as a 

cyber network, is shown in Figure 1(b). EMS will receive information from all 

components of the microgrid and time-of-use (TOU) price signals from the utility grid. 

After optimization, EMS will inform each component of the microgrid about its schedule.  

The deterministic modeling of CHP/CCHP systems is straightforward. Detailed 

modeling of CHP systems can be found in [16]. However, the energy demand (cooling, 

heat, and electricity) of CCHP systems is uncertain in nature and it is difficult to 

accurately predict the energy demand. The uncertainty management becomes more 

challenging for CCHP systems due to mutual coupling of different energies (cooling, 

heat, and electricity). Therefore, due to merits of robust optimization, as stated in the 

previous section, robust optimization-based modeling of CCHP systems is carried out in 

this study. Detailed modeling is shown in the following section. 

 

3. Problem Formulation 

The first step in the RO-based optimization is to formulate a deterministic model [14]. 

Then, the deterministic model is transformed to a min-max robust counterpart by using 

 

Figure 1. (a) Physical Network of Tri-Generation Microgrid System,                                                            
(b) Cyber Network of  Tri-Generation Microgrid System 
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the uncertainty bounds. Finally, the robust counterpart is transformed to a tractable robust 

counterpart, which can be implemented by using commercial software like CPLEX.  

3.1. Deterministic Model  

 

3.1.1. Objective Function: The objective of the formulated model is to minimize the 

operation cost of CHP units (  𝐶𝑐
𝐶𝐻𝑃 ), HOB units (  𝐶ℎ

𝐻𝑂𝐵 ), and ACH units (  𝐶𝑎
𝐴𝐶𝐻 ). In 

addition, the objective of the model is to maximize the profit for microgrid by trading 

electricity with the utility grid ( 𝑃𝑅 
𝐵𝑢𝑦(𝑡) · 𝑃 

𝐵𝑢𝑦(𝑡) −  𝑃𝑅 
𝑆𝑒𝑙𝑙(𝑡) · 𝑃 

𝑆𝑒𝑙𝑙(𝑡)). The objective 

function of the formulated model is given by Equation (1). 

𝑚𝑖𝑛 ∑ ∑( 𝐶𝑐
𝐶𝐻𝑃 · 𝑃𝑐

𝐶𝐻𝑃(𝑡) )

𝐶

𝑐=1

𝑇

𝑡=1

+ ∑ ∑( 𝐶ℎ
𝐻𝑂𝐵 · 𝐻ℎ

𝐻𝑂𝐵(𝑡) )

𝐻

ℎ=1

𝑇

𝑡=1

+ ∑ ∑( 𝐶𝑎
𝐴𝐶𝐻 · 𝐶𝑂𝑎

𝐴𝐶𝐻(𝑡) )

𝐴

𝑎=1

𝑇

𝑡=1

+ ∑( 𝑃𝑅 
𝐵𝑢𝑦(𝑡) · 𝑃 

𝐵𝑢𝑦(𝑡) −  𝑃𝑅 
𝑆𝑒𝑙𝑙(𝑡) · 𝑃 

𝑆𝑒𝑙𝑙(𝑡))                                                        (1)

𝑇

𝑡

 

 

3.1.2. Energy Balancing: The electrical load demand (𝑃 
𝐿𝑜𝑎𝑑(𝑡)) of microgrid can be 

fulfilled by using DGs, CHPs, trading with the utility grid, and charging/discharging 

(𝑃 
𝐷𝑖𝑠(𝑡) − 𝑃 

𝐶ℎ𝑎(𝑡)) of BESS. BESS is taken as a load during charging phase the and as a 

source during discharging phase. EHP uses electricity as an input; therefore, it is taken as 

a load. Equation (2) shows the electrical energy balancing of the microgrid and Equation 

(3) shows the heat energy balancing of microgrid. Heat load demand (𝐻 
𝐿𝑜𝑎𝑑(𝑡)) can be 

fulfilled by using HOBs, CHPs, and TESS (𝐻 
𝐷𝑖𝑠(𝑡) − 𝐻 

𝐶ℎ𝑎(𝑡)). ACH uses heat energy 

as an input; therefore, it is taken as a load for heat energy balancing. The cooling load 

demand (𝐶𝑂 
𝐿𝑜𝑎𝑑(𝑡)) of the microgrid can be fulfilled by using EHPs (𝐶𝑂𝑒

𝐸𝐻𝑃(𝑡)) or 

ACHs (𝐶𝑂𝑎
𝐴𝐶𝐻(𝑡)), as given by Equation (4). 

𝑃 
𝐿𝑜𝑎𝑑(𝑡) = ∑ 𝑃𝑑

𝐷𝐺(𝑡)

𝐷

𝑑

+ ∑ 𝑃𝑐
𝐶𝐻𝑃(𝑡)

𝐶

𝑐

+ 𝑃 
𝐵𝑢𝑦(𝑡) − 𝑃 

𝑆𝑒𝑙𝑙(𝑡) − 𝑃 
𝐶ℎ𝑎(𝑡) + 𝑃 

𝐷𝑖𝑠(𝑡)    − ∑ 𝑃𝑒
𝐸𝐻𝑃(𝑡)    

𝐸

𝑒

(2) 

 

𝐻 
𝐿𝑜𝑎𝑑(𝑡) ≤ ∑ 𝐻ℎ

𝐻𝑂𝐵(𝑡)

𝐻

ℎ

+ ∑ 𝐻𝑐
𝐶𝐻𝑃(𝑡)

𝐶

𝑐

− 𝐻 
𝐶ℎ𝑎(𝑡) + 𝐻 

𝐷𝑖𝑠(𝑡) − ∑ 𝐻𝑎
𝐴𝐶𝐻(𝑡)                                (3)

𝐴

𝑎

 

  

𝐶𝑂 
𝐿𝑜𝑎𝑑(𝑡) = ∑ 𝐶𝑂𝑒

𝐸𝐻𝑃(𝑡)

𝐸

𝑒

+ ∑ 𝐶𝑂𝑎
𝐴𝐶𝐻(𝑡)                                                                                             (4)

𝐴

𝑎

 

 

𝐻𝑐
𝐶𝐻𝑃(𝑡) = 𝑃𝑐

𝐶𝐻𝑃(𝑡).  𝜂𝑐                                                                                                                                   (5) 

𝐶𝑂𝑎
𝐴𝐶𝐻(𝑡) = 𝐻𝑎

𝐴𝐶𝐻(𝑡).  𝜂𝑎                                                                                                                               (6) 

𝐶𝑂𝑒
𝐸𝐻𝑃(𝑡) = 𝑃𝑒

𝐸𝐻𝑃(𝑡).  𝜂𝑒                                                                                                                                (7) 

The electricity to heat conversion efficiency of a c–type CHP unit is given by (5), with 

an efficiency of 𝜂𝑐. The energy efficiency ratings of an a-type ACH unit ( 𝜂𝑎) and an e-

type EHP unit ( 𝜂𝑒) are given by Equations (7) and (8), respectively. 

 

3.1.3. BESS Modeling: The amount of energy, which can be charged at any time t 

(𝑃 
𝐶ℎ𝑎(𝑡)) can be determined by using Equation (8) and discharging by (9). The status-of-

charge (SOC) of BESS at time t (𝑃 
𝑆𝑂𝐶(𝑡)) can be determined by using Equation (10). 

Finally, the bounds of BESS SOC are given by Equation (11).  𝜂𝐶ℎ𝑎  and 𝜂𝐷𝑖𝑠  are the 

charging and discharging losses of BESS. 

0 ≤ 𝑃 
𝐶ℎ𝑎(𝑡) ≤

𝑃𝑚𝑎𝑥 
𝐵𝐸𝑆𝑆 − 𝑃𝐶𝑎𝑝 

𝐵𝐸𝑆𝑆 . 𝑃 
𝑆𝑂𝐶(𝑡 − 1)

 𝜂𝐶ℎ𝑎

                                                                                            (8) 
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0 ≤ 𝑃 
𝐷𝑖𝑠(𝑡) ≤ (𝑃𝐶𝑎𝑝 

𝐵𝐸𝑆𝑆 . 𝑃 
𝑆𝑂𝐶(𝑡 − 1) − 𝑃𝑚𝑖𝑛 

𝐵𝐸𝑆𝑆).  𝜂𝐷𝑖𝑠                                                                                (9) 

𝑃𝐶𝑎𝑝 
𝐵𝐸𝑆𝑆 . 𝑃 

𝑆𝑂𝐶 (𝑡) = 𝑃𝐶𝑎𝑝 
𝐵𝐸𝑆𝑆 . 𝑃 

𝑆𝑂𝐶(𝑡 − 1) + 𝑃 
𝐶ℎ𝑎(𝑡).  𝜂𝐶ℎ𝑎 −

𝑃 
𝐷𝑖𝑠(𝑡)

𝜂𝐷𝑖𝑠

                                                   (10) 

𝑃𝑚𝑖𝑛 
𝐵𝐸𝑆𝑆 ≤ 𝑃𝐶𝑎𝑝 

𝐵𝐸𝑆𝑆 . 𝑃 
𝑆𝑂𝐶 (𝑡) ≤ 𝑃𝑚𝑎𝑥 

𝐵𝐸𝑆𝑆                                                                                                               (11) 

 

3.1.4. TESS Modeling: The TESS model of the thermal storage tank is given by 

Equations (12)-(15) as developed in [16]. The TESS charging (𝐻 
𝐶ℎ𝑎(𝑡)) bounds are given 

by (12) and discharging (𝐻 
𝐷𝑖𝑠(𝑡)) bounds by (13). The SOC (𝐻 

𝑆𝑂𝐶(𝑡)) of TESS can be 

updated by using (14) and SOC bounds are given by (15). 𝐻 
𝐿𝑜𝑠𝑠(𝑡) is the thermal loss of 

the heat energy and it depends upon the time and type of material of tank.  

𝐻 
𝐶ℎ𝑎(𝑡) ≤ 𝐻𝑚𝑎𝑥 

𝑇𝐸𝑆𝑆 − 𝐻𝐶𝑎𝑝 
𝑇𝐸𝑆𝑆 . 𝐻 

𝑆𝑂𝐶(𝑡 − 1) − 𝐻 
𝐷𝑖𝑠(𝑡)                                                                              (12) 

𝐻 
𝐷𝑖𝑠(𝑡) ≤ 𝐻𝐶𝑎𝑝 

𝑇𝐸𝑆𝑆 . 𝐻 
𝑆𝑂𝐶 (𝑡 − 1) + 𝐻 

𝐶ℎ𝑎(𝑡) − 𝐻𝑚𝑖𝑛 
𝑇𝐸𝑆𝑆                                                                               (13) 

𝐻𝐶𝑎𝑝 
𝑇𝐸𝑆𝑆 . 𝐻 

𝑆𝑂𝐶 (𝑡) = 𝐻𝐶𝑎𝑝 
𝑇𝐸𝑆𝑆 . 𝐻 

𝑆𝑂𝐶 (𝑡 − 1) + 𝐻 
𝐶ℎ𝑎(𝑡) − 𝐻 

𝐷𝑖𝑠(𝑡) − 𝐻 
𝐿𝑜𝑠𝑠(𝑡)                                       (14) 

𝐻𝑚𝑖𝑛 
𝑇𝐸𝑆𝑆 ≤ 𝐻𝐶𝑎𝑝 

𝑇𝐸𝑆𝑆 . 𝐻 
𝑆𝑂𝐶 (𝑡) ≤ 𝐻𝑚𝑎𝑥 

𝑇𝐸𝑆𝑆                                                                                                              (15) 

 

3.2. Robust Counterpart 

The second step is to formulate a robust counterpart of the deterministic problem. A 

general problem is considered for explaining the transformation process of RO, similar to 

[17]. Consider a deterministic linear problem (16)-(18). Matrix b is taken as the 

generation set for a given type of energy (cooling, heat, and electricity) and A is the 

energy demand. Uncertainty in A (demand) is considered in this study. In RO, upper and 

lower bounds of uncertainty are considered and scaled deviation (𝜂𝑖𝑗) is defined for each 

energy type. The upper and lower bounds can be determined by using methods suggested 

by [18]. 

𝑚𝑖𝑛 𝑓(𝑥) = 𝑐𝑥                            (16) 

𝑔(𝑥) = 𝐴𝑥 ≤ 𝑏                             (17) 

𝑙 ≤ 𝑥 ≤ 𝑢                       (18) 

The objective of RO is to provide a feasible solution for all possible realizations 

of uncertainties within the specified bounds. For a worst-case analysis, following 

problem is considered, Equations (19)-(21).  

𝑚𝑖𝑛 𝑐𝑥                     (19) 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

+ 𝑚𝑎𝑥 ∑ �̂�𝑖𝑗𝜂𝑖𝑗𝑥𝑗 ≤ 𝑏𝑗

𝑗∈𝐽𝑖

                                                                                                             (20) 

𝑙 ≤ 𝑥 ≤ 𝑢                      (21) 

It can be observed from Equation (20) that there is a max inside the energy 

balancing equation. It is known as sub-problem and next step is to determine the 

dual of the sub-problem. The sub-problem is given by Equations (22) and (23). 

Where, �̂�𝑖𝑗 is the upper bound for ij th element of matrix A and Г𝑖 is the budget of 

uncertainty for ith element.    

𝑚𝑎𝑥 ∑ �̂�𝑖𝑗𝜂𝑖𝑗|𝑥𝑗|

𝑗∈𝐽𝑖

                                                                                                                                           (22) 
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∑ 𝜂𝑖𝑗 ≤ Г𝑖

𝑗∈𝐽𝑖

, 0 ≤ 𝜂𝑖𝑗 ≤ 1                                                                                                                     (23) 

The dual of sub-problem shown above can be formulated as (24)-(26). 𝑧𝑖  and 

𝑝𝑖𝑗are the dual variables of the sub-problem. In the same way, sub-problems can be 

determined for each energy type and corresponding duals can be formulated.  

𝑚𝑖𝑛 𝑧𝑖Г𝑖

+ ∑ 𝑝𝑖𝑗

𝑗∈𝐽𝑖

                                                                                                                                                           (24) 

𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑗 , |𝑥𝑗| ≤ 𝑦𝑗                               (25) 

 𝑧𝑖 , 𝑝𝑖𝑗 , 𝑦𝑗 ≥ 0                                (26) 

 

3.3. Tractable Robust Counterpart 

The final step is to formulate a tractable robust counterpart using the dual of sub-

problem developed in the previous section. The max portion of original robust problem 

(𝑚𝑎𝑥 ∑ �̂�𝑖𝑗𝜂𝑖𝑗𝑥𝑗 ≤ 𝑏𝑗𝑗∈𝐽𝑖
) can be replaced by the dual of sub-problem. In this way, a final 

tractable solution can be obtained as given by Equation (27). The constraints for the final 

tractable robust counterpart are given by Equations (28)-(30).  

𝑚𝑖𝑛 𝑐𝑥                      (27) 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

+ 𝑧𝑖Г𝑖 + ∑ 𝑝𝑖𝑗

𝑗∈𝐽𝑖

≤ 𝑏𝑖                                                                                                                    (28) 

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗, 𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑗                    (29) 

|𝑥𝑗| ≤ 𝑦𝑗 , 𝑧𝑖 , 𝑝𝑖𝑗 , 𝑦𝑗 ≥ 0                    (30) 

 

4. Numerical Simulations 

The microgrid model simulated in this study is similar to that of Figure (1). The 

analysis has been conducted for a 24-h scheduling horizon with a time interval of 1 hour. 

The uncertainty bounds for cooling, heat, and electrical energy demands are 10%, 15%, 

and 20%, respectively. CPLEX has been used as an optimization tool and simulations 

have been carried out in Java environment. 

 

4.1. Input Data 

The hourly electrical, heat, and cooling demand of the microgrid along with TOU 

market price signals are tabulated in Table 1. The output of renewable generators is also 

taken as input and is also tabulated in Table 1. Table 2 shows the generation limits of tri-

generation equipment along with their respective efficiencies and generation costs.  
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Table 1. Hourly Energy Demand and Market Price Signals 

Time  

Interval 

Electrical 

Load 

Heat 

Load 

Cooling  

Load 

Renewable  

Generation 

Buying  

Price 

Selling  

Price 

1 359 219 50 20 80 70 

2 367 260 60 23 80 70 

3 389 289 89 28 80 70 

4 337 239 37 32 80 70 

5 367 307 67 39 80 70 

6 353 333 103 50 80 70 

7 398 388 108 55 100 80 

8 427 397 117 60 100 80 

9 469 369 129 69 100 80 

10 498 388 138 68 100 80 

11 513 313 143 70 100 80 

12 568 360 168 75 130 100 

13 597 297 197 80 130 100 

14 512 212 212 80 130 100 

15 519 219 219 74 130 100 

16 507 247 227 73 130 100 

17 468 268 268 61 130 100 

18 435 285 235 50 130 100 

19 412 312 212 31 100 80 

20 498 348 198 35 100 80 

21 447 347 147 28 100 80 

22 439 389 139 33 100 80 

23 327 327 127 20 80 70 

24 308 308 47 18 80 70 

Table 2. Parameters Related to Tri-Generation Equipment of Microgrid 

 TESS BESS CHP HOB ACH EHP 

Max. (kW) 250 100 450 200 200 200 

Min. (kW) 0 0 0 0 0 0 

Efficiency 

(%) 
98 

𝜂𝐶ℎ𝑟  98, 

𝜂𝐷𝑖𝑠 98 
 𝜂𝑐 75  𝜂𝑏 100  𝜂𝑎 85  𝜂𝑒 125 

Cost (Won) - - 98 67 25 - 

 

4.2. Case 1: Uncertainty in Electrical Demand Only  

In this case, nominal values of heat and cooling demand are considered while worst-

case uncertainty for electrical demand is considered. In order to visualize the effect of 

uncertainty, both nominal (normal) and worst-case realization results of electrical demand 

are shown in Figures 2 and 3. It can be observed from Figure 2(a) that generation of CHP 

has been increased in time intervals 1-4. Figure 2(b) shows that more electricity has been 
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bought from the utility grid to fulfill the uncertainty gap. Similarly, the amount of 

electricity sold to the utility grid has reduced in the peak price intervals. Due to the 

inconsideration of uncertainties in heating and cooling load demands, the change in 

commitment status of heating and cooling equipment is not prominent. However, due to 

the coupling of electrical and thermal energy, the commitment status of thermal 

equipment is also changed in some time intervals. During time interval 18 (Figure 2(c)), 

the output of HOB has been increased to increase the output of ACH. This will result in 

reduction of EHP output as shown in Figure 3. SOC of BESS and TESS is shown in 

Figure 2(d). 

 

 

Figure 2. Commitment Staus of Tri-Generation Equipment in Case 1: (a) 
CHP; (b)  Trading Amount; (c) HOB; (d) SOC of BESS and TESS 

 

Figure 3. Commitment Staus EHP and ACH in Case 1 

4.3. Case 2: Uncertainty in Heat Demand Only 

In this case, nominal values of electrical and cooling energy demands are considered 

with uncertain heat load demand. Similar to the previous case, two cases (normal and 
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worst) are considered in this case also. It can be observed from Figure 4(a) that generation 

of CHP has been increased to its fullest throughout the day to fulfill the thermal load 

demand. After fully operating the CHP, HOB output has also been increased in time 

intervals 7-11 and 13-24 as shown in Figure 3(c). Trading of electricity with the utility 

grid has not been drastically changed due to nominal values of electrical load demand for 

this case. However, during the time intervals 4, 6, 7, 23, and 24 power selling to utility 

has been reduced (Figure 4(b)) and electricity has been used to operate EHP. In order to 

fulfill the heat uncertainty gap, the output of ACH has been reduced during time intervals 

12, 13, and 17 as shown in Figure 5. Due to unavailability of extra heat, TESS has not 

been fully used in this case as shown in Figure 3(d). BESS has been charged in the off-

peak price intervals and discharged in the peak intervals to maximize the profit of 

microgrid as shown in Figure 3(d). 

 

 

Figure 4. Commitment Staus of Tri-Generation Equipment in Case 2:            
(a) CHP; (b)  Trading Amount; (c) HOB; (d) SOC of BESS and TESS 

 

Figure 5. Commitment Staus EHP and ACH in Case 2 
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4.4. Case 3: Uncertainty in Cooling Demand Only      

In this case, uncertainty in cooling energy demand is considered while electrical and 

heat loads are having nominal values. It can be observed from Figures 6 and 7 that the 

effect of cooling load uncertainty is lesser prominent as compared to previous two cases. 

It is due to the narrower uncertainty bound (10%) for cooling uncertainty demand, which 

was 15% and 20% for heating and electricity demands. Figure 6(a) shows a minute 

change in the CHP output before and after considering the uncertainty in cooling demand. 

Similarly, trading with the utility grid has also changed slightly as depicted in Figure 6(b). 

During time intervals 18 and 20, the output of HOB has been increased (Figure b(c)) to 

operate ACH in order to fulfill the cooling demand uncertainty. During off-peak price 

intervals, the output of EHP has been increased and during peak price intervals, the output 

of ACH has been increased to fulfill the cooling load demand as depicted in Figure 7. The 

SOC of BESS and TESS showed a minute change in this case as depicted in Figure 6(d). 

 

 

Figure 6. Commitment Staus of Tri-Generation Equipment in Case 3:              
(a) CHP; (b)  Trading Amount; (c) HOB; (d) SOC of BESS and TESS 

 

Figure 7. Commitment Staus EHP and ACH in Case 3 
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4.5. Case 4: Uncertainty in all CCHP Demands  

In the final case, uncertainty in all the three types of energy demands is considered. 

This is the worst possible case in the given framework of the simulated microgrid model. 

Due to the collective uncertainty in energy demands, the difference between the nominal 

case and the worst-case is more prominent as compared to the previous three cases. It can 

be observed from Figures 8(a) that CHP has been operated to its fullest throughout the 

day similar to Case 2. The difference in trading of electricity with the utility grid in this 

case is similar to that of Case 1. It can be observed from Figures 2(b) and 8(b). The 

change in commitment status of HOB, as depicted in Figure 8(c), is similar to that of Case 

2, Figure 4(c). Similarly, the commitment status of ACH and EHP in this case is similar to 

that of Case 3. It can be verified from Figures 9 and 7. The SOC trend of BESS in this 

case is similar to that of Case 1 and TESS is similar to that of Case 2.  

 

 

Figure 8. Commitment Staus of Tri-Generation Equipment in Case 4:   
(a) CHP; (b)  Trading Amount; (c) HOB; (d) SOC of BESS and TESS 

 

Figure 9. Commitment Staus EHP and ACH in Case 4 
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5. Conclusion 

An RO-based energy management strategy for tri-generation microgrids is proposed in 

this paper. Given the uncertainty bounds, the proposed strategy is capable of providing 

feasible solutions for all possible realizations of uncertainties. The conservativeness of the 

solution can be controlled by deciding an acceptable value of budget of uncertainty. A 

tradeoff between the conservativeness of the solution and probability of feasible solution 

is required to assure an economic operation. Various uncertainty cases have been 

simulated in this study. It has been observed from simulation results that uncertainty in 

electrical demand influences the commitment status of heating and cooling equipment. 

Similarly, the influence of uncertainties in heating and cooling demands is also not 

limited to their respective sources’ commitment status. The mutual coupling among the 

three energy demands in CCHP systems can be observed from the simulation results. 
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