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Abstract

*

Tri-generation microgrids, also known as combined cooling, heat and powe?\;aaf)
n

microgrids, have the potential to suffice the collective thermal and electric s of
the microgrid residents. However, the energy demand of microgrids canno b rately
predicted. Therefore, in this paper, robust optimization-based mo optimal
operation of tri-generation microgrids is proposed. U , heat, and
power demands and worst-case realizations of uncegtainties are cﬁqi?e ed. Initially, a
deterministic problem is formulated which is th¢ ansfor nt min-max robust
counterpart. Finally, a tractable robust counterpar ormulgjtf;&) using the dual of the
inner sub-problem. The formulated model is céﬂe of p;o%g feasible solutions for all
possible realizations of uncertainties in gn mands (Within the uncertainty bounds).
The final tractable robust counterpa @ Iat‘\ PLEX and various uncertainty
ve p

cases are simulated. Simulation res I robustness and effectiveness of
the proposed optimization strateg

Keywords: CCHP m|cr0 dem;; ertainty, microgrid operation, optimal

operation, tri- generatlon rogrld r imization
1. Introductl %

Microgrid are ex@ o play a vital role in the transformation of the
conventio @ e distripution system to an active distribution network [1]. MGs have
the potentidi=té offer benefits to both the utilities and the customers, which

includes economic, al, and environmental benefits. In this regard, combined heat
and power (CH are one of the most beneficial technologies. Waste heat is used to
fulfill the heat@demands of the consumers and thus enhances the overall system
efficienc ri-géneration, also known as combined cooling, heat and power (CCHP),
technologi e becoming more desirable and are even more economical due to their
abilit ffice cooling, heat, and power demands [2]. The efficiency of tri-generation

t is up to 60-80%, which is considerably higher than those of conventional power

%‘HS. Penetration of distributed generators and demand response programs is

asing for achieving the fore-mentioned benefits from MGs. This enhanced
penetration has imposed new challenges to the scheduling of microgrids [3]. Due to the
significance of uncertainties associated with the energy demands of tri-generation
microgrids, several researches have been conducted in the recent years.

Centralized energy management system (EMS) has been used for scheduling of tri-
generation microgrids by [4]. Dynamic optimization and model predictive control have
been for scheduling in day-ahead and real-time scheduling horizons. A method for
optimizing all the three types of energies (electricity, heat, and cooling) and their usage in
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urban areas has been proposed by [5]. The developed optimization strategy has been
tested in a southern Italian city. The authors in [6], have proposed a two-stage optimal
planning algorithm for tri-generation microgrids. The objective of the formulation is to
minimize both carbon emissions and life cycle operation cost of the microgrid. A review
has been carried out by [7] on planning, scheduling, and control of CCHP systems. Due to
the dependence of CCHP microgrid performance on design and energy management
strategies of microgrids, those aspects have been focused by the authors. A study has been
conducted in [8] for analyzing the impacts of wastes to energy conversion for CCHP
applications. Both energy level and exergy analysis have been conducted to reveal the
variation, guality, and quantity of energy in the operation of CCHPs. The authors in [9,
10] have evaluated the economic impacts of converting conventional power stations to
CCHPs.

Various researches have been conducted for managing the uncertainties associated with
load demands and renewable energy sources in microgrids. Sensitivity analysis hads, bee
used by authors in [11] for managing uncertainties in microgrids. Fuzzy |
optimization has been carried out by authors in [12]. A review of stochastl
techniques used for uncertainty management of mwrogndsg@ been ¢ |n [13].

Robust optimization has been used by authors of [14 r* man uncertainties
associated with microgrids. Among the above-mentighed Jun rtal management
techniques, robust optimization and stochastic optigtiza opularlty among
the microgrids energy management community. st opﬂ@ has the ability to
provide immunity against the worst-case rgalization of _unce¥tainty, in contrast to
probabilistic immunity provided by stochas @Pmlzatm\‘j1 nigues. Detailed merits of
robust optimization and demerits of stoch pt|m| ation ®an be found in [14].

The models used for energy man i@l of trj; ion microgrids, available in the

literature, are either deterministic or sed o astlc optimization. Similarly, most
of the researches available in th ture on unee talnty management are focused on
electrical energy managem% nS|d n of uncertainties in demand of heat and
cooling energies is equally im rtant the coupling of these energies (cooling,
heat, and electricity), un inty man t of CCHP systems is more challenging and
more desirable. Additgg , due toythe mpIeX|ty of stochastic optimization techniques
and probablllstlcﬁg tee Qf le solutions, these techniques are less attractive.
Therefore, an a@ has been
considerin inties i
In this , robu
carried out. Initially,

mixed integer i
deterministic p

this paper to schedule the resources of microgrids
HP demands using robust optimization.
ization-based modeling of CCHP microgrids has been
erministic problem has been formulated which is based on
ogramming (MILP). Then a robust counterpart of the initial
is formulated. The robust counterpart is a min-max problem and is
non-linear. Therefore, dual of the inner sub-problem has been determined. Finally, a
trackable&s& optimization problem has been formulated. The final problem is mixed
integer programming and has been implemented in CPLEX. Different uncertainty
case een simulated to evaluate the feasibility of the proposed method. Uncertainty
% ical load only, uncertainty in heat load only, uncertainty in cooling load only, and
tainty in all the three types of loads have been considered in the simulations.

2. Tri-Generation Microgrids and Demand Uncertainties

A typical tri-generation microgrid model is shown in Figure 1. Figure 1(a) shows the
electricity, heating, and cooling networks, which are collectively termed as a physical
network, of the tri-generation microgrid. It can be observed from Figure 1(a) that
electricity demand of the microgrid can be fulfilled by using CHPs, renewable energy
sources (DGs), utility grid, and battery energy storage system (BESS). Similarly, the
excess of power can be traded with the utility grid or can be stored in the BESS. Heat
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energy demand of the microgrid can be fulfilled by using CHPs, heat only boilers
(HOBs), and thermal energy storage system (TESS). Excess of heat will be wasted only
when TESS is fully charged. The cooling demand of the microgrid can be fulfilled by
using adsorption chillers (ACHs) or electric heat pumps (EHPS). The
information/command flow of the tri-generation microgrid model, which is named as a
cyber network, is shown in Figure 1(b). EMS will receive information from all
components of the microgrid and time-of-use (TOU) price signals from the utility grid.
After optimization, EMS will inform each component of the microgrid about its schedule.
The deterministic modeling of CHP/CCHP systems is straightforward. Detailed
modeling of CHP systems can be found in [16]. However, the energy demand (cooling,
heat, and electricity) of CCHP systems is uncertain in nature and it is difficult to
accurately predict the energy demand. The uncertainty management becomes more
challenging for CCHP systems due to mutual coupling of different energies (cqolingse
heat, and electricity). Therefore, due to merits of robust optimization, as stat@eli e
previous section, robust optimization-based modeling of CCHP systems is@ out in

this study. Detailed modeling is shown in the following sectiox
N

N\

Fuel

m BESS
| (ENT { EHp Coolng\
| E: }

\ X A A '

load

\b v v v \4 v
O Utility Grid CHP | | TESS DGs BESS | | Electric load

@ ————— > - oo R > <“--->
HeatFlow  Cooling Energy  Fuel Flow Electricity Flow Communication

Flow Flow

CT% I
|
>|<
|
‘,44
>
> <-—-
4»
<--
>
<>
—— > €—— >
Microgrid

Figure 1. (a) Physical Network of Tri-Generation Microgrid System,
(b) Cyber Network of Tri-Generation Microgrid System

3. Problem Formulation

The first step in the RO-based optimization is to formulate a deterministic model [14].
Then, the deterministic model is transformed to a min-max robust counterpart by using
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the uncertainty bounds. Finally, the robust counterpart is transformed to a tractable robust
counterpart, which can be implemented by using commercial software like CPLEX.
3.1. Deterministic Model

3.1.1. Objective Function: The objective of the formulated model is to minimize the
operation cost of CHP units ( ¢S#7), HOB units ( ¢#°8), and ACH units ( cA"). In
addition, the objective of the model is to maximize the profit for microgrid by trading
electricity with the utility grid ( PREW(¢t) - PEW (t) — PRS¢!(¢) - PSe!(t)). The objective
function of the formulated model is given by Equation (1).

min Z Z( CCHP . pCHP(£) ) 4+ Z Z( CHOB . HHOB(1)) + i i( CACH . COACH (1))

t=1c=1 t=1 h=1 t=1a=1

+ Z(PRBuy(t) _PBuy(t) _ PRSell(t) . PSell(t)) v

3.1.2. Energy Balancing: The electrical load demand (PL°%4(t)) of midro can be
fulfilled by using DGs, CHPs, trading with the utility grif, and chafgi charging
(PP (t) — PCha(t)) of BESS. BESS is taken as a load the and as a
source during discharging phase. EHP uses electrlé alv input; tf e, it is taken as

a load. Equation (2) shows the electrical energy b

(3) shows the heat energy balancing of microgrid t load demand (HX°%%(t)) can be

fulfilled by using HOBs, CHPs, and TESS t) — HC ). ACH uses heat energy
as an input; therefore, it is taken as a loa eat ener lancing. The cooling load
demand (CO%°%4(t)) of the mlcrogrl e fu |I by using EHPs (COEHP(t)) or

ACHSs (COACH (1)), as glven by Equ

ploai (1) = Z”‘?G(WZPCQ Y(o %(t) PE(e) + PP (D) ZPE”P(t) @

HLoad(t) < HHOE&& CHP% a(t) + HDlS(t) Z HACH(t) (3)
COLoad(t) OEHP( @ OACH(t) (4)

HEMP(¢) = Pf”‘i&& (5)
CO&‘C”(t)g&;‘C t). Ng (6)
605”"(6 FHP (1), 71, )

Tectricity to heat conversion efficiency of a c-type CHP unit is given by (5), with
@lciency of n.. The energy efficiency ratings of an a-type ACH unit (7,) and an e-
Yl

EHP unit ( n,) are given by Equations (7) and (8), respectively.

3.1.3. BESS Modeling: The amount of energy, which can be charged at any time t
(P¢ha(t)) can be determined by using Equation (8) and discharging by (9). The status-of-
charge (SOC) of BESS at time t (PS°¢(t)) can be determined by using Equation (10).
Finally, the bounds of BESS SOC are given by Equation (11). ncpn, and np;s are the
charging and discharging losses of BESS.

PchE;;s PC BESS PSOC(t _ 1)

Ncha

0 < Pha(p) <

®)
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0 < PPE(1) < (PERS.PPC(t = 1) = PRER®): s €)
BESS pSoC BESS pSocC Ch, PDiS (t)
PCap P (t) = PCap P (t - 1) +P a(t)- Ncha — (10)
Dis
PEESS < PEESS. PSOC (1) < PR (11)

3.1.4. TESS Modeling: The TESS model of the thermal storage tank is given by
Equations (12)-(15) as developed in [16]. The TESS charging (H"¢(t)) bounds are given
by (12) and discharging (HP®(t)) bounds by (13). The SOC (HS9(t)) of TESS can be
updated by using (14) and SOC bounds are given by (15). H-?55(t) is the thermal loss of

the heat energy and it depends upon the time and type of material of tank.
HEM(t) < HEESS — HIESS. HSOC (¢ — 1) — HPB (1) \Qp’
?713)
0 (14)
HEESS < HEESS. HOC (6) < HIESS Q/ (15)
N\
3.2. Robust Counterpart O \\/

The second step is to formulate a robust o@&erpartoo deterministic problem. A
general problem is considered for explaini@ transformatjon process of RO, similar to
[17]. Consider a deterministic linea em 8). Matrix b is taken as the

generation set for a given type of§ (co \ t, and electricity) and A is the

HPS(t) < HEGS HSOC (£ — 1) + HM(t) — H S

HEESS HSOC (t) = Higy® HSOC(t — 1) + H"(t) — HP™ (t) — HSQ

energy demand. Uncertainty in nd) is considered in this study. In RO, upper and
lower bounds of uncertainty% dered caled deviation (n;;) is defined for each
energy type. The upper and lowet bou determined by using methods suggested
by [18]. @ \

min f(x) = cx . Q * (16)
gix)=Ax<b Q\\ Q an
I<x<u

&
The objective of RQ&O provide a feasible solution for all possible realizations
of uncertainties wi e specified bounds. For a worst-case analysis, following

problem is consi , Equations (19)-(21).
min cx I (19)
@lax dijnijxj < bj (20)

S
} J€Ji
@S u (21)

It can be observed from Equation (20) that there is a max inside the energy
balancing equation. It is known as sub-problem and next step is to determine the
dual of the sub-problem. The sub-problem is given by Equations (22) and (23).
Where, a;; is the upper bound for ij" element of matrix A and I; is the budget of
uncertainty for it element.

maxz dL]nL]|x]| (22)

JEJi
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Zni}'SFi' OSHUS:I (23)
JEJi

The dual of sub-problem shown above can be formulated as (24)-(26). z; and
p;jare the dual variables of the sub-problem. In the same way, sub-problems can be
determined for each energy type and corresponding duals can be formulated.

min z;T;

+ z Dij (24)
JEJi

Z; + pij > dijyj, |x}| < y] (25)

Ziy pl]iy] =0 (26)

\,’
3.3. Tractable Robust Counterpart ?“

The final step is to formulate a tractable robust counterpart using dual of sub-
problem developed in the previous section. The max p b%)f’origi ust problem
(max ¥ je;, @;jn;jx; < bj) can be replaced by the dual 9 problem. | s way, a final

T

tractable solution can be obtained as given by Equetion . co ints for the final
tractable robust counterpart are given by Equation (30). \
min cx Q . (27)
Zaijxj +ZiFi +ZPU < bi %\O . @ (28)
=1 jeli & s&
lj < x,- < 'Ll]', Zi + pi]- = &i}-yj A@ (29)
R,

|x]| < y], Zi,pi]',y]' >0 Q\ (30)
4. Numerical @tionsﬂ

The microrQq el simﬁ@ in this study is similar to that of Figure (1). The

analysis ha % onduyct r a 24-h scheduling horizon with a time interval of 1 hour.
The uncertaiaty’bound ling, heat, and electrical energy demands are +10%, +15%,

&

and £20%, respectively~€PLEX has been used as an optimization tool and simulations
have been carried& ava environment.
4.1. Inp ata

The
mar

electrical, heat, and cooling demand of the microgrid along with TOU
e signals are tabulated in Table 1. The output of renewable generators is also
input and is also tabulated in Table 1. Table 2 shows the generation limits of tri-
ation equipment along with their respective efficiencies and generation costs.
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Table 1. Hourly Energy Demand and Market Price Signals

Time Electrical | Heat | Cooling | Renewable | Buying | Selling
Interval Load Load Load | Generation | Price Price
1 350 219 50 20 80 70
2 367 260 60 23 80 70
3 389 289 89 28 80 70
4 337 239 37 32 80 70
5 367 307 67 39 80 70
6 353 333 | 103 50 80 70
7 398 388 | 108 55 100 80 N
8 427 397 | 117 60 100 80 \/
9 469 369 | 129 69 100 go~ ?
10 498 388 | 138 68 4| 100 @
11 513 313 | 143 70N>\ 100
12 568 360 | 168 | 5N | 13 100
13 597 207 | 197 | B0 \\y' 100
14 512 212 | 2124] 80 | W0 | 100
15 519 219 |, pro\N| 74NS 130 | 100
16 507 241 ]2 \2T 130 | 100
17 468 268 b9268 A\& 130 | 100
18 435 N&g| 235 |V s0 130 | 100
19 412 N2 | | 3 100 80
20 496, | 34845¢\1 35 100 80
21 A 34y | Y147 28 100 80
\)39 \@9\ 139 33 100 80
327 7 | 127 20 80 70
308 47 18 80 70
Table 2. Pa‘rﬁ,@rs Related to Tri-Generation Equipment of Microgrid
N 7Ess | BEss | cHP | HOB | AcH | EHP
y | 250 100 450 200 200 200
W) 0 0 0 0 0 0
Q(-)Effzg/':)my 98 ’;C:LS Zz .75 | 1,100 | 0,85 | n,125
Cost (Won) - - 98 67 25 -

4.2. Case 1: Uncertainty in Electrical Demand Only

In this case, nominal values of heat and cooling demand are considered while worst-
case uncertainty for electrical demand is considered. In order to visualize the effect of
uncertainty, both nominal (normal) and worst-case realization results of electrical demand
are shown in Figures 2 and 3. It can be observed from Figure 2(a) that generation of CHP
has been increased in time intervals 1-4. Figure 2(b) shows that more electricity has been

Copyright © 2016 SERSC
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bought from the utility grid to fulfill the uncertainty gap. Similarly, the amount of
electricity sold to the utility grid has reduced in the peak price intervals. Due to the
inconsideration of uncertainties in heating and cooling load demands, the change in
commitment status of heating and cooling equipment is not prominent. However, due to
the coupling of electrical and thermal energy, the commitment status of thermal
equipment is also changed in some time intervals. During time interval 18 (Figure 2(c)),
the output of HOB has been increased to increase the output of ACH. This will result in
reduction of EHP output as shown in Figure 3. SOC of BESS and TESS is shown in
Figure 2(d).

—s—Electricity Normal —&—Heat Normal —e—Trading Normal - e - Trading Worst
- e - Electricity Worst -« - Heat Worst —
<
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Figure 2. Co @t Sta f Tri-Generation Equipment in Case 1: (a)
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B
TN
2150

L3 5 7 9 11 1315171912123
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Figure 3. Commitment Staus EHP and ACH in Case 1

4.3. Case 2: Uncertainty in Heat Demand Only

In this case, nominal values of electrical and cooling energy demands are considered
with uncertain heat load demand. Similar to the previous case, two cases (normal and
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worst) are considered in this case also. It can be observed from Figure 4(a) that generation
of CHP has been increased to its fullest throughout the day to fulfill the thermal load
demand. After fully operating the CHP, HOB output has also been increased in time
intervals 7-11 and 13-24 as shown in Figure 3(c). Trading of electricity with the utility
grid has not been drastically changed due to nominal values of electrical load demand for
this case. However, during the time intervals 4, 6, 7, 23, and 24 power selling to utility
has been reduced (Figure 4(b)) and electricity has been used to operate EHP. In order to
fulfill the heat uncertainty gap, the output of ACH has been reduced during time intervals
12, 13, and 17 as shown in Figure 5. Due to unavailability of extra heat, TESS has not
been fully used in this case as shown in Figure 3(d). BESS has been charged in the off-

peak price intervals and discharged in the peak intervals to maximize the profit of
microgrid as shown in Figure 3(d).
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Figure 5. Commitment Staus EHP and ACH in Case 2
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4.4. Case 3: Uncertainty in Cooling Demand Only

In this case, uncertainty in cooling energy demand is considered while electrical and
heat loads are having nominal values. It can be observed from Figures 6 and 7 that the
effect of cooling load uncertainty is lesser prominent as compared to previous two cases.
It is due to the narrower uncertainty bound (+10%) for cooling uncertainty demand, which
was +15% and +20% for heating and electricity demands. Figure 6(a) shows a minute
change in the CHP output before and after considering the uncertainty in cooling demand.
Similarly, trading with the utility grid has also changed slightly as depicted in Figure 6(b).
During time intervals 18 and 20, the output of HOB has been increased (Figure b(c)) to
operate ACH in order to fulfill the cooling demand uncertainty. During off-peak price
intervals, the output of EHP has been increased and during peak price intervals, the output
of ACH has been increased to fulfill the cooling load demand as depicted in Figure 7. The
SOC of BESS and TESS showed a minute change in this case as depicted in Flgure (d). o

—e—Electricity Normal —s—Heat Normal —s—Trading Normal g'orst
- @ - Electricity Worst -« -Heat Worst 2
450 $ %
100 Q s
7

1 \\
400 ﬂ
300 ﬂ N
13579111315171921‘% 1*5\7911131517192123
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6 ) @
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(=]
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1113 17192133 1 3 5 7 9 11 13 15 17 19 21 23
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Figure 6. Comigiitment Staus of Tri-Generation Equipment in Case 3:
(a) CHP; ading Amount; (c) HOB; (d) SOC of BESS and TESS
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Figure 7. Commitment Staus EHP and ACH in Case 3
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4.5. Case 4: Uncertainty in all CCHP Demands

In the final case, uncertainty in all the three types of energy demands is considered.
This is the worst possible case in the given framework of the simulated microgrid model.
Due to the collective uncertainty in energy demands, the difference between the nominal
case and the worst-case is more prominent as compared to the previous three cases. It can
be observed from Figures 8(a) that CHP has been operated to its fullest throughout the
day similar to Case 2. The difference in trading of electricity with the utility grid in this
case is similar to that of Case 1. It can be observed from Figures 2(b) and 8(b). The
change in commitment status of HOB, as depicted in Figure 8(c), is similar to that of Case
2, Figure 4(c). Similarly, the commitment status of ACH and EHP in this case is similar to
that of Case 3. It can be verified from Figures 9 and 7. The SOC trend of BESS in this
case is similar to that of Case 1 and TESS is similar to that of Case 2.
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Figure 9. Commitment Staus EHP and ACH in Case 4
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5. Conclusion

An RO-based energy management strategy for tri-generation microgrids is proposed in
this paper. Given the uncertainty bounds, the proposed strategy is capable of providing
feasible solutions for all possible realizations of uncertainties. The conservativeness of the
solution can be controlled by deciding an acceptable value of budget of uncertainty. A
tradeoff between the conservativeness of the solution and probability of feasible solution
is required to assure an economic operation. Various uncertainty cases have been
simulated in this study. It has been observed from simulation results that uncertainty in
electrical demand influences the commitment status of heating and cooling equipment.
Similarly, the influence of uncertainties in heating and cooling demands is also not
limited to their respective sources’ commitment status. The mutual coupling among the
three energy demands in CCHP systems can be observed from the simulation results.
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