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Abstract 

This paper treats the problem of diffraction of monochromatic field by two apertures 

under the conditions of normal incidence and linear polarization. We study the effect of 

diffraction and interferences by two thin apertures in the Fraunhofer region using Gauss 

approximation, where we introduce a birefringent wedge whose length is equal to the 

width of single aperture, we demonstrate the effect of the wedge's thickness on the 

intereference pattern. 
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1. Introduction 

The electromagnetic field originating from an aperture whose dimension is comparable 

to the wavelength of the field is diffracted [1], this effect is studied in both near field and 

far field regions. For the second case, the expression of the electric field is in general a 

function of the Fourier transform of the spatial response of the aperture [2], this 

remarkable effect is based on the same concept of frequency analysis, when a periodic 

waveform is analyzed in limited period of time or window, the frequency spectrum is 

function of the expression of the observation window (an illustrative example is given in 

the appendix). In the case of two apertures [3], the expression of the electric field is 

combination of two effects, diffraction and interferences, where the intensity distribution 

when observed on screen placed in the far field region is characterized by an amplitude 

modulation, the intensity has slow and fast frequencies where the first is related to the 

width of the aperture and the second frequency is function of distance between the 

apertures. 

Since the discovery of wave-particle nature of visible spectrum of electromagnetic 

fields, the diffraction was also observed for particles like electrons [4], where the 

diffraction and interference patterns follow the same model of the electromagnetic waves. 

The distribution of the incident electrons on screen is proportional to the square of the 

wave function which is also the probability density function. Given the effect of 

interference that governs the shape of the intensity distribution, altering the pattern is 

possible by controlling the phase difference of the propagating waves either from the 

source, between the source and the diffraction plan, or right after the diffraction plan 

where the phase shifting consists of changing the polarization state [5], by using retarders 

[6], by the effect of dichroism, or by birefringent materials [7]. 

In this paper, we treat the problem of the diffraction and interferences by two thin 

apertures in far field region, we study the problem with new configuration using 

birefringent wedge [7,8,9,10] that is material characterized by slow and fast axis of 
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propagation. We study the intensity function based single mode laser field that vertically 

polarized, with normal incidence using Gauss approximation. Based on numerical 

simulations, we demonstrate that the introduction of the birefringent wedge whose length 

equals the width of single aperture, changes the shape of the intensity distribution. 

 

2. Standard Double Aperture Interferences 

In this section, we present a description of standard double aperture problem using 

single mode laser with normal incidence, let us consider that the plan of diffraction is 

 , ,o x y  where the incident electric field is vertically polarized such as the variation of 

the amplitude is parallel to z axis and the wave vector k is parallel to y axis. The 

diffraction plan consists of two thin vertical apertures with width a and height b such that 

b a , the distance between the centers of the apertures is d . We begin the analysis of 

the diffracted field with the first aperture, a screen is placed perpendicularly to the 

diffraction plan at distance L that verifies the Fraunhofer criterion of propagation also 

known as far field region 
22 /L a  , the expression of the field 

1E is obtained by the 

following equation: 
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Where
1 ( )

0

j tE r e     in
2V/m . 

0E is the amplitude of the field in V/m , 2   

is the angular frequency in rad.Hz ,  is the initial phase,   is the wavelength in 

m , 
12k  is the wave number and r is the radius of propagation from the 

aperture to a point x on the screen. The expression is obtained using Gauss 

approximation also known as small angle approximation: 
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Similarly, the diffraction field from the second aperture has the same expression 

with additional phase expression: 
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The interference between the two diffracted fields can be examined by means of 

second order correlation function which is a function that is proportional to the intensity, 

over a period of timeT . The intensity function is calculated based on the superposition of 

the elementary fields
1 2E E E  , it is given by the following expression: 

 

* 2 2 2

0 0

1 2
( ) | | sin 1 cos

2

ax dx
I x c EE c a c

L L

 
  

 

    
       

    
                         (4) 

 

Where
12

0 8.85 10    F/m  is the permittivity, 
83 10c    m/s is the phase speed, 

*(.) is the conjugate of complex number and f   is the time average operator defined 

by the equation: 
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The expression of the intensity can also be written in the following traditional form: 
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where 
2 2 2

0 0 0 / (2 )I cE a r in 
2W/m . The intensity function is a characterized by two 

properties, the first is related to the amplitude variation that is modeled by the intensity of 

diffracted single aperture, the second property is that the interference pattern generated by 

interaction of the two fields 
1E and 

2E by theirs relative phase difference, as  I x is 

dependent on the phase difference between the two fields, the introduction of any phase 

shifting optical device in front of the apertures change the shape of  I x . As a 

contribution in this paper, we study a linear variation model of the phase difference where 

we present in the next section the effect of the birefringence on the intensity function. 

 

3. Interferences using Birefringent Wedge 

The birefringence is the optical property of anisotropic material that is based on 

polarization, when an incident field passes through a birefringent material, it divides into 

two parts. Based on this effect, the diffraction model presented in the previous section, 

changes if we place in front of one the apertures a birefringent material. In this section we 

study the theoretical intensity function of diffraction by two apertures where a 

birefringent wedge is placed in front of one of the apertures. We consider a simple case of 

wedge having slow and ordinary axis. The wedge is characterized by a base of length 

a which is also the width of the aperture as illustrated in Figure 1. 

 

da a

t=q

 

Figure 1. Diffraction by Two Thin Apertures and Birefrengent Wedge with 

Thickness t q . 

The height or the thickness  t x is modeled by linear function, for simplicity we 

consider that at / 2x a  , the thickness is zero and at / 2x a , it equals a multiple of 

wavelength q  where q R , this model is described by the following relations: 
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The introduced phase difference by the wedge is given by the relation [10]: 

 

2
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With birefringence ( )e on n n   . Inserting the linear expression of the thickness 

yields the following expression of the phase difference: 
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If we study the general case of incident field where it can be circularly, elliptically or 

partially polarized [11], the problem can be treated using Jones formalism [12] and 

coherency matrix, so the polarization matrix of the wedge is given by the following 

matrix: 
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Given an incident field 
2 1E R  that passes through the material, the output field 'E is 

obtained by the linear relation 'E ME , the new intensity is calculated by the operation: 
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Where (.) denotes the conjugate transpose operator. We begin the analysis of the 

intensity function by the diffracted field of the left aperture containing the wedge, the 

expression of the electric field contains the phase difference introduced by the wedge: 
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For the second aperture, the field contained the phase difference due to the distance d : 
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The new intensity function of the total field
1 2E E E  depends on two 

variables x and q , developing the expression of the intensity function yields the following 

result: 
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Where the constants A and B  are defined by : 
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Given the two variables x and q we study some properties of the intensity function. The 

first property is the intensity at the origin of the Cartesian reference 0x  , for an arbitrary 

value of q , the intensity at the origin is written as: 

 

 2

0( 0, ) sin ( ) 1 2sin ( )cos( )I x q I c nq c nq nq                                               (16) 

 

The second property is related to the verification of the function in the absence of the 

birefringent wedge, which is equivalent to the condition 0q  , in this case, in the 

intensity function is reduced to the standard form presented in equation (4), the result is 

given by: 
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From the above relation, the intensity at the center in the absence of the wedge is 

  00, 0 4I x q I   , indeed, if we study the problem of diffraction by N apertures, the 

maximum intensity is 
2

0( 0)I x I N  . The fourth property is related to the shape of the 

intensity distribution for larger values of wedge's thickness, when q becomes larger than 

the wavelength  , we can remark that the intensity  ,I x q near the origin is 

approximately reduced into the function 
2

0 sin
ax

I c
L




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 because nq A  . 

 

4. Simulation Results 

We conduct some computer simulations to verify the effect of birefringent wedge on 

the intensity distribution of diffraction by two apertures. The parameters of the simulation 

are described as follows; we consider a HeNe laser source with 

wavelength 0.633  μm  and initial intensity of 
0 0.5I   

2mW/m . The width of the 

apertures is set to 4 2.532a   μm and the distance between them is 

40 25.32d   μm . The observation screen is placed at distance 0.5L  m  

perpendicularly to the optical axis. The intensity function is sampled in the 

range min max10 , 10x cm x cm   . 

After testing the program with several values of the thickness q of the birefringent 

wedge where the chosen value of the birefringence is 
210n   , we present in Figure 2 

the obtained results of the intensities. 



International Journal of Advanced Science and Technology 

Vol.114 (2018) 

 

 

156  Copyright ⓒ 2018 SERSC Australia 

-10 -5 0 5 10
0

1

2

x [cm]

I(
x)

 m
W

/m
2

(a)

-10 -5 0 5 10
0

0.5

1

x [cm]

I(
x)

 m
W

/m
2

(b)

-10 -5 0 5 10
0

0.5

1

x [cm]

I(
x)

 m
W

/m
2

(c)

-10 -5 0 5 10
0

0.5

1

x [cm]

I(
x)

 m
W

/m
2

(d)

-10 -5 0 5 10
0

0.5

1

x [cm]

I(
x)

 m
W

/m
2

(e)

-10 -5 0 5 10
0

0.5

1

x [cm]

I(
x)

 m
W

/m
2

(f)

 

Figure 2. Diffraction by Two Apertures and One Birefringent Wedge with 

Different Values of Thickness, (a)  , 0I x q  , (b)  , 40I x q  , (c)  , 80I x q  , 

(d)  , 100I x q  , (e)  , 200I x q  , and (f)  , 1000I x q   

We remark from the figure that the first function (a) represents the intensity in the 

absence of the wedge 0q  , the maximum of the intensity is
04 2I 

2mW/m where the 

amplitude is modeled by the shape of single aperture diffraction. For the cases represented 

by (b),(c),(d) and (e) we remark that  ,I x q is characterized by fluctuations and non 

symmetrical effects of the shape, finally for larger values of thickness as represented by 

the case (e) where 1000q  , the intensity converges to the shape of single diffraction 

function with maximum intensity
0I where the interference effect diminishes.  

We present in Figure.3, the standard diffraction pattern without the birefringent wedge 

where the amplitude of the diffracted field is modulated by the shape of the single 

aperture diffraction. 
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Figure 3. Standard Diffraction Pattern by Two Apertures Illustrating the 
Amplitude Modulation 
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From these results we conclude that the introduction of the birefringent wedge with 

larger thickness relatively to the wavelength of incident single mode field that is vertically 

polarized, minimizes the interference effect between the two diffracted fields. 

As perspective, we can study a simple extension to the above model by considering a 

wedge whose length covers the total length of the diffraction plan which is equal to 

a d , the geometry of this second configuration is described in Figure 4. 

 

da a

t=q

 

Figure 4. Diffraction by Two Thin Apertures and Birefringent Wedge with 

Length a d  

Similarly to the previous case, using the boundary conditions, (- / 2) 0t a  and 

( / 2 )t a d q  , the phase difference introduced by the wedge is given by the equation: 
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Following the same method for the computation, the diffracted electric field from the 

left aperture is: 
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Next, Solving the integral for the right aperture from / 2d a to / 2d a gives the 

following result: 
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The resulting intensity is therefore given by: 
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We remark that if 0q  which refers to the case of absence of the wedge, we obtain the 

standard expression of double-aperture. 
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4. Conclusion 

In this paper, we have studied the problem of far field diffraction of single mode laser 

by two thin apertures using small angle approximation with the introduction of 

birefringent material. The parameters of the birefringent wedge have an impact on the 

intensity distribution. We have studied some properties of the intensity where a 

birfringent wedge is placed in front of one of the apertures. We have demonstrated 

theoretically and numerically that larger values of wedge's thickness relatively the 

wavelength changes the diffraction pattern such that the interference pattern is minimized. 

 

Appendix 
 

1. As mentionned in the introduction, the width of the aperture has an impact on the shape 

of the diffraction, similarly to the frequency analysis of a waveform, the spectrum is a 

function of the width of the observation window, as an illustrative example we present a 

simple case of periodic waveform 02
( )

j f t
x t e


 .We consider the case t R , the 

spectrum is given by: 
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X f x t e dt f f                                                                                  (22) 

Next a consider that the variable [ / 2, / 2]t T T  , equivalently, the waveform can be 

written as 02
( ) ( )

j f t
x t e r t


 where the introduced function is defined by ( ) 1r t   if 

/ 2t T and equals zero otherwise. The Fourier transform of this function 

is ( ) sin ( )r f T c fT . Using the convolution theorem, the spectrum of ( )x t is 

calculated by the following equation: 

 

0 0( ) ( ) sin ( ) sin ( ( ))X f f f T c fT T c T f f                                                  (23) 

 

Where   denotes the convolution product. We remark that the spectrum depends on 

the frequency response of the introduced function ( )r t . 

 

2. We present, in this part, the Mathworks program to generate the results of the 

diffraction, the output vectors are I for standard double aperture intensity and I2 for 

the configuration of the birefringent wedge. 

 
 

I0=0.5;             % mW/m^2 

lambda=0.633*1e-6;   
L=0.5;               
a=4*lambda;          
d=40*lambda;         
x=(-10:0.01:10)*1e-2; 
Dn=1e-2; 
Phi=pi*a*x/(lambda*L); 

 
% In the abscence of birefringent wedge. 

 
I=2*I0*sinc(Phi).^2.*(1+cos(2*pi*d*x/(lambda*L))); 

 
%With birefringent wedge 
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Phi2=2*pi*d*x/(lambda*L); 

 
I2=@(I0,Phi,Phi2,q) I0*(sinc(Phi+pi*Dn*q).^2+sinc(Phi).^2+... 
    2*sinc(Phi+pi*Dn*q).*sinc(Phi).*cos(Phi2+pi*Dn*q)); 

 
plot(x,I2(I0,Phi,Phi2,100)); 
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