Skip to main content
Log in

Banach-Stone type theorems for C1-function spaces over Riemannian manifolds

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

Let M be a compact Riemannian manifold and let C1(M, ℝd) be the space of all C1-maps of M to the d-dimensional Euclidean space ℝd with the C1-topology. For p ∈ [1, ∞] and a compact submanifold K of M, we define a norm

$${\parallel \cdot \parallel_{\left\langle {M,K;p} \right\rangle }}\,on\,{C^1}\left( {M,{^d}} \right)\,by\,{\parallel f \parallel_{\left\langle {M,K;p} \right\rangle }} = {\left( {\parallel {fK} \parallel_\infty ^p + \parallel {Df} \parallel_\infty ^p} \right)^{1/p}}$$

for fC1(M, ℝd), where Df denotes the derivative off (the norm Df∞ will be defined in Section 1). For two pairs (M, K), (N, L) of Riemannian manifolds and their submanifolds, we characterize a surjective linear •<M,K;pî - •<N,L;p>-isometry T: C1(M, ℝd) → C1(N,ℝd), satisfying some regularity conditions, as a modified weighted composition operator whose symbol is a Riemannian homothety ϕ: NM. If K and L are not singletons, then ϕ is a Riemannian isometry and satisfies ϕ(L) = K. The result indicates that the isometries of C1-function spaces with respect to the above norms determine not only the isometry type of the ambient manifold but also the embedding type of the submanifolds up to isometry. Applying this result we study deformations of isometry groups associated with some perturbations of norms on C1(M,∝d). Aspects of these deformations naturally depend on isometry groups of the underlying manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Al-Halees and R.J. Fleming, Extreme point methods and Banach-Stone theorems, J. Aust. Math. Soc., 75 (2003), 125–143.

    Article  MathSciNet  Google Scholar 

  2. E. Behrends, M-structures and the Banach-Stone theorem, Lect. Notes in Math. 736, Springer, 1979.

    Google Scholar 

  3. F. Botelho and J. Jamison, Surjective isometries of differentiable vector-valued functions, Studia Math., 192 (2009), 39–50.

    Article  MathSciNet  Google Scholar 

  4. M. Cambern, Isometries of certain Banach algebras, Studia Math., 25 (1964-1965), 217–225.

    Article  MathSciNet  Google Scholar 

  5. N. Dunford and J. Schwarz, Linear operators, vol.1, General Theory, Interscience, New York, 1958.

    Google Scholar 

  6. R. Fleming and J. Jamison, Isometries on Banach spaces; vol.1, function spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Math. 129, Chapman & Hall/CRC, Boca Raton, 2003.

    Google Scholar 

  7. R. Fleming and J. Jamison, Isometries on Banach spaces vol.2; Vector-valued function spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Math. 138, Chapman & Hall/CRC, Boca Raton, 2008.

    Google Scholar 

  8. D. Husemoller, Fiber bundles, Third Edition, G.T.M. 20, Springer, 1994.

    Book  Google Scholar 

  9. K. Jarosz, Isometries in semisimple commutative Banach algebras, Proc. Amer. Math. Soc., 94 (1985), 65–71.

    Article  MathSciNet  Google Scholar 

  10. K. Jarosz and V. D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc., 305 (1988), 193–206.

    Article  MathSciNet  Google Scholar 

  11. K. Kawamura, Linear surjective isometries between vector-valued function spaces, J. Australian Math. Soc., 100 (2016), 349–373.

    Article  MathSciNet  Google Scholar 

  12. K. Kawamura, Banach-Stone theorems for spaces of vector bundle continuous sections, Top. Appl., 227 (2017), 118–134.

    Article  MathSciNet  Google Scholar 

  13. K. Kawamura, Isometries of vector-valued function spaces preserving the kernel of a linear operator, Publ. Math. Debrecen, to appear.

  14. K. Kawamura, Isometries of function spaces over Riemannian manifolds, Acta Sci. Math. (Szeged), to appear.

  15. K. Kawamura, Perturbations of norms on C1 function spaces and associated isom-etry groups, Top. Proc., 51 (2018), 169–196.

    Google Scholar 

  16. K. Kawamura, H. Koshimizu and T. Miura, Norms on C1([0,1]) and their isometries, preprint.

  17. K. Kawamura and T. Miura, Real-linear surjective isometries between function spaces, Top. Appl., 226 (2017), 66–85.

    Article  MathSciNet  Google Scholar 

  18. S. Kobayashi, Transformatoin Groups in Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd sequence, vol. 70, Springer, 1972.

  19. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, Interscience Tracts in Pure and Appl. Math. No. 15, Interscience, 1963.

  20. L. Li and R. Wang, Surjective isometries on the vector-valued differentiable function spaces, J. Math. Anal. Appl., 427 (2015), 547–556.

    Article  MathSciNet  Google Scholar 

  21. S. B. Myers and N. E. Steenrod, The group of isometries of a Riemannian manifold, Annal. Math., 40 (1939), 400–416.

    Article  MathSciNet  Google Scholar 

  22. R. Palais, On differentiability of isometries, Proc. Amer. Math. Soc., 8 (1957), 805–807.

    Article  MathSciNet  Google Scholar 

  23. N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math., 38 (1971), 177–192.

    Article  MathSciNet  Google Scholar 

  24. V. D. Pathak, Isometries of C(n)[0, 1], Pacific J. Math., 94 (1981), 211–222.

    Article  MathSciNet  Google Scholar 

  25. T. Sakai, Riemannian Geometry, Translations Math. Mono. 149, Amer. Math. Soc., 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Kawamura.

Additional information

Communicated by L. Molnár

The author is supported by JSPS KAKENHI Grant Number 26400080.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamura, K. Banach-Stone type theorems for C1-function spaces over Riemannian manifolds. ActaSci.Math. 83, 551–591 (2017). https://doi.org/10.14232/actasm-016-323-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-016-323-4

AMS Subject Classification

Key words and phrases

Navigation