Skip to main content
Log in

Use of yeast as a model system to investigate protein conformational diseases

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Protein conformational diseases arise when a cellular protein adopts an aberrant shape that either directly or indirectly alters the physiology of its host cell. Notable conformational diseases include cystic fibrosis, Huntington’s disease, the prion-related diseases, Alzheimer’s disease, and antitrypsin deficiency. In principle, the severity and progression of conformational diseases can be altered by cellular factors that recognize and attempt to ameliorate the harmful effects of the disease-causing, misshapen protein. To better define the mechanistic underpinnings of cellular factors that mediate quality control, and to understand why a single misfolded protein can impact cell viability, specific proteins that cause each of the diseases listed above have been expressed in a model eukaryote, the yeast Saccharomyces cerevisiae. In this review, we describe what has been learned from these studies, and speculate on future uses of yeast expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartwell, L. H., Culotti, J., Pringle, J. R., and Reid, B. J. (1974) Genetic control of the cell division cycle in yeast. Science 183, 46–51.

    Article  PubMed  CAS  Google Scholar 

  2. Carrell, R. W. and Lomas, D. A. (1997) Conformational disease. Lancet 350, 134–138.

    Article  PubMed  CAS  Google Scholar 

  3. Pilewski, J. M. and Frizzell, R. A. (1999) Role of CFTR in airway disease. Physiol Rev. 79, S215-S255.

    PubMed  CAS  Google Scholar 

  4. Kopito, R. R. (1999) Biosynthesis and degradation of CFTR. Physiol. Rev. 79, S167-S173.

    PubMed  CAS  Google Scholar 

  5. Brodsky, J. L. (2001) Chaperoning the maturation of the cystic fibrosis transmembrane conductance regulator. Am. J. Physiol. Lung Cell Molec. Physiol. 281, L39-L42.

    CAS  Google Scholar 

  6. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    Article  PubMed  CAS  Google Scholar 

  7. Ward, C. L., Omura, S., and Kopito, R. R. (1995) Degradation of CFTR by the ubiquitin proteasome pathway. Cell 83, 121–127.

    Article  PubMed  CAS  Google Scholar 

  8. McCracken, A. A. and Brodsky, J. L. (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng, S. H., Gregory, R. J., Marshall, J., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, Y., Janich, S., Cohn, J. A., and Wilson, J. M. (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by Hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480–9484.

    Article  PubMed  CAS  Google Scholar 

  11. Pind, S., Riordan, J. R., and Williams, D. B. (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12784–12788.

    PubMed  CAS  Google Scholar 

  12. Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D. M. (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505.

    Article  PubMed  CAS  Google Scholar 

  13. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M., and Cyr, D. M. (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, Y., Nijbroek, G., Sullivan, M. L., et al. (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol. Biol. Cell. 12, 1303–1314.

    PubMed  CAS  Google Scholar 

  15. Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T., and Brodsky, J. L. (2004) Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol. Biol. Cell. 15, 4787–4797.

    Article  PubMed  CAS  Google Scholar 

  16. Loo, M. A., Jensen, T. J., Cui, L., Hou, Y., Chang, X. B., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J. 17, 6879–6887.

    Article  PubMed  CAS  Google Scholar 

  17. Nadler, S. G., Tepper, M. A., Schacter, B., and Mazzucco, C. E. (1992) Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 258, 484–486.

    Article  PubMed  CAS  Google Scholar 

  18. Rubenstein, R. C. and Zeitlin, P. L. (2000) Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am. J. Physiol. Cell Physiol. 278, C259-C267.

    PubMed  CAS  Google Scholar 

  19. Fewell, S. W., Day, B. W., and Brodsky, J. L. (2001) Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J. Biol. Chem. 276, 910–914.

    Article  PubMed  CAS  Google Scholar 

  20. Fewell, S. W., Smith, C. M., Lyon, M. A., et al. (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol. Chem. 279, 51131–51140.

    Article  PubMed  CAS  Google Scholar 

  21. Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S., and Welch, W. J. (1996) Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117–125.

    Article  PubMed  CAS  Google Scholar 

  22. Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J., and Kopito, R. R. (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638.

    Article  PubMed  CAS  Google Scholar 

  23. Howard, M., Fischer, H., Roux, J., et al. (2003) Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J. Biol. Chem. 278, 35159–35167.

    Article  PubMed  CAS  Google Scholar 

  24. Teckman, J. H., Qu, D., and Perlmutter, D. H. (1996) Molecular pathogenesis of liver disease in alpha1-antitrypsin deficiency. Hepatology 24, 1504–1516.

    PubMed  CAS  Google Scholar 

  25. Qu, D., Teckman, J. H., Omura, S., and Perlmutter, D. H. (1996) Degradation of a mutant secretory protein, alpha1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271, 22791–22795.

    Article  PubMed  CAS  Google Scholar 

  26. Burrows, J. A., Willis, L. K., and Perlmutter, D. H. (2000) Chemical chaperones mediate increased secretion of mutant alpha 1- antitrypsin (alpha 1-AT) Z: A potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc. Natl. Acad. Sci. USA 97, 1796–1801.

    Article  PubMed  CAS  Google Scholar 

  27. Le, A., Steiner, J. L., Ferrell, G. A., Shaker, J. C., and Sifers, R. N. (1994) Association between calnexin and a secretion-incompetent variant of human alpha 1-antitrypsin. J. Biol. Chem. 269, 7514–7519.

    PubMed  CAS  Google Scholar 

  28. Ware, F. E., Vassilakos, A., Peterson, P. A., et al. (1995) The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270, 4697–4704.

    Article  PubMed  CAS  Google Scholar 

  29. Cabral, C. M., Liu, Y., and Sifers, R. N. (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem. Sci. 26, 619–624.

    Article  PubMed  CAS  Google Scholar 

  30. Ellgaard, L. and Helenius, A. (2001) ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol. 13, 431–437.

    Article  PubMed  CAS  Google Scholar 

  31. McCracken, A. A. and Kruse, K. B. (1993) Selective protein degradation in the yeast exocytic pathway. Mol. Biol. Cell. 4, 729–736.

    PubMed  CAS  Google Scholar 

  32. Werner, E. D., Brodsky, J. L., and McCracken, A. A. (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl. Acad. Sci. USA 93, 13797–13801.

    Article  PubMed  CAS  Google Scholar 

  33. Brodsky, J. L., Werner, E. D., Dubas, M. E., Goeckeler, J. L., Kruse, K. B., and McCracken, A. A. (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J. Biol. Chem. 274, 3453–3460.

    Article  PubMed  CAS  Google Scholar 

  34. Cabral, C. M., Liu, Y., Moremen, K. W., and Sifers, R. N. (2002) Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs. Mol. Biol. Cell. 13, 2639–2650.

    Article  PubMed  CAS  Google Scholar 

  35. Palmer, E. A., Kruse, K. B., Fewell, S. W., Buchanan, S. M., Brodsky, J. L., and McCracken, A. A. (2003) Differential requirements of novel A1PiZ degradation deficient (ADD) genes in ER-associated protein degradation. J. Cell. Sci. 116, 2361–2373.

    Article  PubMed  CAS  Google Scholar 

  36. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.

    Article  PubMed  CAS  Google Scholar 

  37. Lindquist, S., Krobitsch, S., Li, L., and Sondheimer, N. (2001) Investigating protein conformation-based inheritance and disease in yeast. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 169–176.

    Article  PubMed  CAS  Google Scholar 

  38. Wickner, R. B., Taylor, K. L., Edskes, H. K., Maddelein, M. L., Moriyama, H., and Roberts, B. T. (1999) Prions in Saccharomyces and Podospora spp.: protein-based inheritance. Microbiol. Mol. Biol. Rev. 63, 844–861.

    PubMed  CAS  Google Scholar 

  39. Lacroute, F. (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522.

    PubMed  CAS  Google Scholar 

  40. Cox, B. S. (1965) A cytoplasmic suppressor of supersuppressor in yeast. Heredity 24, 505–521.

    Google Scholar 

  41. Sparrer, H. E., Santoso, A., Szoka, F. C. Jr., and Weissman, J. S. (2000) Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289, 595–599.

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J. S. (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328.

    Article  PubMed  CAS  Google Scholar 

  43. Moriyama, H., Edskes, H. K., and Wickner, R. B. (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20, 8916–8922.

    Article  PubMed  CAS  Google Scholar 

  44. Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L., and Chernoff, Y. O. (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333.

    PubMed  CAS  Google Scholar 

  45. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., and Liebamn, S. W. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884.

    Article  PubMed  CAS  Google Scholar 

  46. Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K., and Zink, A. D. (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol. Cell. Biol. 19, 8103–8112.

    PubMed  CAS  Google Scholar 

  47. Kushnirov, V. V., Kryndushkin, D. S., Boguta, M., Smirnov, V. N., and Ter-Avanesyan, M. D. (2000) Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr. Biol. 10, 1443–1446.

    Article  PubMed  CAS  Google Scholar 

  48. Sondheimer, N., Lopez, N., Craig, E. A., and Lindquist, S. (2001) The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 20, 2435–2442.

    Article  PubMed  CAS  Google Scholar 

  49. Parsell, D. A., Kowal, A. S., Singer, M. A., and Lindquist, S. (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478.

    Article  PubMed  CAS  Google Scholar 

  50. Jones, G., Song, Y., Chung, S., and Masison, D. C. (2004) Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate binding. Mol. Cell Biol. 24, 3928–3937.

    Article  PubMed  CAS  Google Scholar 

  51. Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 106, 171–182.

    Article  PubMed  CAS  Google Scholar 

  52. Jin, T., Gu, Y., Zanusso, G., et al. (2000) The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J. Biol. Chem. 275, 38699–38704.

    Article  PubMed  CAS  Google Scholar 

  53. Chien, P., Weissman, J. S., and DePace, A. H. (2004). Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656.

    Article  PubMed  CAS  Google Scholar 

  54. Ross, C. A. (1995) When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493–496.

    Article  PubMed  CAS  Google Scholar 

  55. Reddy, P. H., Williams, M., and Tagle, D. A. (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci. 22, 248–255.

    Article  PubMed  CAS  Google Scholar 

  56. Krobitsch, S. and Lindquist, S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  57. Muchowski, P. J., Schaffar, G., Sittler, A., Wanker, E. E., Hayer-Hartl, M. K., and Hartl, F. U. (2000) Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid fibrils. Proc. Natl. Acad. Sci. USA 97, 7841–7846.

    Article  PubMed  CAS  Google Scholar 

  58. Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O., and Sherman, M. Y. (2002) Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like Rnq1. J. Cell Biol. 157, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  59. Schwimmer, C. and Masison, D. C. (2002) Antagonistic interactions between yeast [PSI(+)] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol. Cell. Biol. 22, 3590–3598.

    Article  PubMed  CAS  Google Scholar 

  60. Willingham, S., Outeiro, T. F., DeVit, M. J., Lindquist, S. L., and Muchowski, P. J. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302, 1769–1772.

    Article  PubMed  CAS  Google Scholar 

  61. Selkoe, D. J. (1994) Alzheimer’s disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438–447.

    Article  PubMed  CAS  Google Scholar 

  62. Ponte, P., Gonzalez-DeWhitt, P., Schilling, J., et al. (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331, 525–527.

    Article  PubMed  CAS  Google Scholar 

  63. Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Villa-Komaroff, L., Gusella, J. F., and Neve, R. L. (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331, 528–530.

    Article  PubMed  CAS  Google Scholar 

  64. Kang, J., Lemaire, H. G., Unterbeck, A., et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  65. Kitaguchi, N., Takahashi, Y., Tokushima, Y., Shiojiri, S., and Ito, H. (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331, 530–532.

    Article  PubMed  CAS  Google Scholar 

  66. Esch, F. S., Keim, P. S., Beattie, E. C., et al. (1990) Cleavage of amyloid beta-peptide during constitutive processing of its precursor. Science 248, 1122–1124.

    Article  PubMed  CAS  Google Scholar 

  67. Sinha, S., Anderson, J. P., Barbour, R., et al. (1999) Purification and cloning of amyloid precursor protein b-secretase from human brain. Nature 402, 537–540.

    Article  PubMed  CAS  Google Scholar 

  68. Sisodia, S. S. and St. George-Hyslop, P. H. (2002) γ-Secretase, Notch, Aβ and Alzheimer’s disease: where do the presenilins fit in? Nat. Rev. Neurosci. 3, 281–290.

    Article  PubMed  CAS  Google Scholar 

  69. Kametani, F. (2004) Secretion of long Aβ-related peptides processed at ε-cleavage site is dependant on the α-secretase pre-cutting. FEBS Lett. 570, 73–76.

    Article  PubMed  CAS  Google Scholar 

  70. Zhao, G., Mao, G., Tan, J., et al. (2004) Identification of a new Presenilin-dependant-ζ-cleavage site within the transmembrane domain of Amyloid Precursor Protein. J. Biol. Chem. 279, 50647–50650.

    Article  PubMed  CAS  Google Scholar 

  71. Marlow, L., Canet, R. M., Haugabook, S. J., Hardy, J.A., Lahiri, D.K. and Sambamurti, K. (2003). APH1, PEN2 and Nicastrin increase Aβ levels and γ-secretase activity. Biochem. Biophys. Res. Commun. 305, 502–509.

    Article  PubMed  CAS  Google Scholar 

  72. Mann, D. M. A., Yuonis, N., Jones, D., and Stoddart, R. W. (1992) The time course of pathological events in Down’s syndrome with particular reference to the involvement of microglial cells and deposits of b/A4. Neurodegeneration 1, 201–215.

    Google Scholar 

  73. Benson, M. D. (1991) Inherited amyloidosis. J. Med. Genetics 28, 73–78.

    Article  CAS  Google Scholar 

  74. Mullan, M. and Crawford, F. (1993) Genetic and molecular advances in Alzheimer’s disease. Trends Neurosci. 16, 398–403.

    Article  PubMed  CAS  Google Scholar 

  75. Marx, J. (2001) New leads on the “how” of Alzheimer’s. Science 293, 2192–2194.

    Article  PubMed  CAS  Google Scholar 

  76. Koo, E. H. and Squazzo, S. L. (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389.

    PubMed  CAS  Google Scholar 

  77. Xu, H., Sweeney, D., Wang, R., et al. (1997) Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc. Natl. Acad. Sci. USA 94, 3748–3752.

    Article  PubMed  CAS  Google Scholar 

  78. Skovronsky, D. M., Pijak, D. S., Doms, R. W., and Lee, V. M. (2000) A distinct ER/IC gamma-secretase competes with the proteasome for cleavage of APP. Biochemistry 39, 810–817.

    Article  PubMed  CAS  Google Scholar 

  79. Chyung, A. S. C., Greenberg, B. D., Cook, D. G., Doms, R. W., and Lee, V. M.-Y. (1997) Novel β-secretase cleavage of β-amyloid precursor protein in the endoplasmic reticulum/intermediate compartment of NT2N cells. J. Cell Biol. 138, 671–680.

    Article  PubMed  CAS  Google Scholar 

  80. Cook, D. G., Forman, M. S., Sung, J. C., et al. (1997) Alzheimer’s Abeta1-42 is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med. 3, 1021–1023.

    Article  PubMed  CAS  Google Scholar 

  81. Hartmann, T., Bieger, S. C., Bruhl, B., et al. (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nature Med. 3, 1016–1020.

    Article  PubMed  CAS  Google Scholar 

  82. Cook, D. G., Sung, J. C., Golde, T. E., et al. (1996) Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc. Natl. Acad. Sci. USA 93, 9223–9228.

    Article  PubMed  CAS  Google Scholar 

  83. Kovacs D. M., Fausett, H. J., Page, K. J., et al. (1996) Alzheimer associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Med. 2, 224–229.

    Article  PubMed  CAS  Google Scholar 

  84. Borchelt, D. R., Thinakaran, G., Eckman, C. B., et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17, 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  85. Scheuner, D., Eckman, C., Jensen, M., et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med. 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  86. Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., and Haass, C. (2003) Reconstitution of γ-secretase activity. Nature Cell Biol. 5, 486–488.

    Article  PubMed  CAS  Google Scholar 

  87. Schekman, R. and Novick, P. (2004) 23 genes, 23 years later. Cell S116, S13-S15.

    Article  Google Scholar 

  88. Greenfield, J. P., Xu, H., Greengard, P., Gandy, S., and Seeger, M. (1999) Generation of the amyloid β-peptide N terminus in Saccharmoyces cerevisiae expressing human Alzheimer’s amyloid-b precursor protein. J. Biol. Chem. 274, 33843–33846.

    Article  PubMed  CAS  Google Scholar 

  89. Zhang, W., Espinoza, D., Hines, V., Innis, M., Mehta, P., and Miller, D. L. (1997) Characterization of beta-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases. Biochim. Biophys. Acta 1359, 110–122.

    Article  PubMed  CAS  Google Scholar 

  90. Komano, H., Seeger, M., Gandy, S., Wang, G. T., Krafft, G. A., and Fuller, R. S. (1998) Involvement of cell surface glycosyl-phosphatidylinositol-linked aspartyl proteases in alpha-secretase-type cleavage and ectodomain solubilization of human Alzheimer beta-amyloid precursor protein in yeast. J. Biol. Chem. 273, 31648–31651.

    Article  PubMed  CAS  Google Scholar 

  91. Gunyuzlu, P. L., White, W. H., Davis, G. L., Hollis, G. F., and Toyn, J. H. (2000) A yeast genetic assay for caspase cleavage of the amyloid-beta precursor protein. Mol. Biotechnol. 15, 29–37.

    Article  PubMed  CAS  Google Scholar 

  92. Le Brocque, D., Henry, A., Cappai, R., et al. (1998) Processing of the Alzheimer’s disease amyloid precursor protein in Pichia pastoris: immunodetection of α-, β-, and γ-secretase products. Biochemistry 37, 14958–14965.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Brodsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coughlan, C.M., Brodsky, J.L. Use of yeast as a model system to investigate protein conformational diseases. Mol Biotechnol 30, 171–180 (2005). https://doi.org/10.1385/MB:30:2:171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:30:2:171

Index Entries

Navigation