Skip to main content
Log in

Comparison of different decontamination methods for reagents to detect low concentrations of bacterial 16S DNA by real-time-PCR

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Contamination of polymerase chain reaction (PCR) reagents continues to be a major problem when consensus primers are used for detection of low concentrations of bacterial DNA. We designed a real-time polymerase chain reaction (PCR) for quantification of bacterial DNA by using consensus primers that bind specifically to the 16S region of bacterial DNA. We have tested four different methods of decontamination of PCR reagents in a project aimed at detecting bacterial DNA at low concentrations: deoxyribonuclease (DNAse) treatment, restriction endonuclease digestion, UV irradiation, and 8-methoxypsoralen in combination with long-wave UV light to intercalate contaminating DNA into double-stranded DNA. All four methods result in inhibition of the PCR reaction, and most of the decontamination procedures failed to eliminate the contaminating bacterial DNA. Only the DNAse decontamination proved to be efficient in eliminating contaminating DNA while conserving PCR efficiency. All four decontamination methods are time consuming and have the possibility of carrying new contamination into the reaction mixture. However, decontamination with DNAse may help, together with the use of highly purified PCR reagents, in detecting small amounts of bacterial DNA in clinical specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M. L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.

    Article  PubMed  CAS  Google Scholar 

  2. Gutell, R. R., Larsen, N., and Woese, C. R. (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58, 10–26.

    PubMed  CAS  Google Scholar 

  3. Woese, C. R. (1987) Bacterial evolution. Microbiol Rev 51, 221–271.

    PubMed  CAS  Google Scholar 

  4. Bottger, E. C. (1989) Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 53, 171–176.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, K., Neimark, H., Rumore, P., and Steinman, C. R. (1989) Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol Lett 48, 19–24.

    Article  PubMed  CAS  Google Scholar 

  6. Wilson, K. H., Blitchington, R. B., and Greene, R. C. (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28, 1942–1946.

    PubMed  CAS  Google Scholar 

  7. Barry, T., Powell, R. and Gannon, F. (1990) A general method to generate DNA probes for microorganisms. Biotechnology (N Y) 8, 233–236.

    Article  CAS  Google Scholar 

  8. Greisen, K., Loeffelhoz, M., Purohit, A., & Leong, D. (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32, 335–351.

    PubMed  CAS  Google Scholar 

  9. Bottger, E. C. (1990) Frequent contamination of Taq polymerase with DNA. Clin Chem 36, 1258–1259.

    PubMed  CAS  Google Scholar 

  10. Kwok, S. and Higuchi, R. (1989) Avoiding false positives with PCR. Nature 339, 237–238.

    Article  PubMed  CAS  Google Scholar 

  11. Rand, K. H. and Houck, H. (1990) Taq polymerase contains bacterial DNA of unknown origin. Mol Cell Probes 4, 445–450.

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt, T. M., Pace, B., and Pace, N. R. (1991) Detection of DNA contamination in Taq polymerase. Biotechniques 11, 176–177.

    PubMed  CAS  Google Scholar 

  13. Carroll, N. M., Adamson, P., and Okhravi, N. (1999) Elimination of bacterial DNA from Taq DNA polymerases by restriction endonuclease digestion. J Clin Microbiol 37, 3402–3404.

    PubMed  CAS  Google Scholar 

  14. Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones, V., Kaczmarski, E. B., and Fox, A. J. (2000) Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol 38, 1747–1752.

    PubMed  CAS  Google Scholar 

  15. DeFilippes, F. M. (1991) Decontaminating the polymerase chain reaction. Biotechniques 10, 26, 28, 30.

    PubMed  CAS  Google Scholar 

  16. Hilali, F., Saulnier, P., Chachaty, E., and Andremont, A. (1997) Decontamination of polymerase chain reaction reagents for detection of low concentrations of 16S rRNA genes. Mol Biotechnol. 7, 207–216.

    Article  PubMed  CAS  Google Scholar 

  17. Hughes, M. S., Beck, L. A., and Skuce, R. A. (1994) Identification and elimination of DNA sequences in Taq DNA polymerase. J Clin Microbiol 32, 2007–2008.

    PubMed  CAS  Google Scholar 

  18. Jinno, Y., Yoshiura, K., and Niikawa, N. (1990) Use of psoralen as extinguisher of contaminated DNA in PCR. Nucleic. Acids. Res 18, 6739.

    Article  PubMed  CAS  Google Scholar 

  19. Klausegger, A., Hell, M., Berger, A., et al. (1999) Gram type-specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria. J Clin Microbiol 37, 464–466.

    PubMed  CAS  Google Scholar 

  20. Meier, A., Persing, D. H., Finken, M., and Bottger, E. C. (1993) Elimination of contaminating DNA within polymerase chain reaction reagents: implications for a general approach to detection of uncultured pathogens. J Clin Microbiol 31, 646–652.

    PubMed  CAS  Google Scholar 

  21. Ou, C. Y., Moore, J. L., and Schochetman, G. (1991) Use of UV irradiation to reduce false positivity in polymerase chain reaction. Biotechniques 10, 442, 444, 446.

    PubMed  CAS  Google Scholar 

  22. Rochelle, P. A., Weightman, A. J., and Fry, J. C. (1992) DNase I treatment of Taq DNA polymerase for complete PCR decontamination. Biotechniques 13, 520.

    PubMed  CAS  Google Scholar 

  23. Sarkar, G. and Sommer, S. S. (1990) Shedding light on PCR contamination. Nature 343, 27.

    Article  PubMed  CAS  Google Scholar 

  24. Ou, C. Y., McDonough, S. H., Cabanas, D., et al. (1990) Rapid and quantitative detection of enzymatically amplified HIV-1 DNA using chemiluminescent oligonucleotide probes. AIDS Res Hum Retroviruses 6, 1323–1329.

    PubMed  CAS  Google Scholar 

  25. Widjojoatmodjo, M. N., Fluit, A. C., and Verhoef, J. (1994) Rapid identification of bacteria by PCR-single-strand conformation polymorphism. J Clin Microbiol 32, 3002–3007.

    PubMed  CAS  Google Scholar 

  26. Sharma, J. K., Gopalkrishna, V., and Das, B. C. (1992) A simple method for elimination of unspecific amplifications in polymerase chain reaction. Nucleic Acids Res 20, 6117–6118.

    Article  PubMed  CAS  Google Scholar 

  27. Roizes, G., Nardeux, P. C., and Monier, R. (1979) A new specific endonuclease from Anabaena variabilis. FEBS Lett 104, 39–44.

    Article  PubMed  CAS  Google Scholar 

  28. Furrer, B., Candrian, U., Wieland, P., and Luthy, J. (1990) Improving PCR efficiency. Nature 346, 324.

    Article  PubMed  CAS  Google Scholar 

  29. Mariani, B. D., Martin, D. S., Levine, M. J., Booth, R. E. J., and Tuan, R. S. (1996) The Coventry Award. Polymerase chain reaction detection of bacterial infection in total knee arthroplasty. Clin Orthop 331, 11–22.

    Article  PubMed  Google Scholar 

  30. Widjojoatmodjo, M. N., Fluit, A. C., and Verhoef, J. (1995) Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 33, 2601–2606.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Klaschik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaschik, S., Lehmann, L.E., Raadts, A. et al. Comparison of different decontamination methods for reagents to detect low concentrations of bacterial 16S DNA by real-time-PCR. Mol Biotechnol 22, 231–242 (2002). https://doi.org/10.1385/MB:22:3:231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:22:3:231

Index Entries

Navigation