Skip to main content
Log in

Apoptosis: Molecular regulation of cell death and hematologic malignancies

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We describe the molecular mechanisms of apoptosis and its relationships with hematologic malignancies, stressing the concept that, both positive and negative deregulation of apoptosis, may be involved in hematologic human diseases. So, this fundamental process must be balanced by so far unknown mechanisms, involving caspases (cysteine proteases, cleaving the protein substrate after an aspartate residue). These, so far known, ten proteases, are interconnected in a molecular cascade, initiated by the release of cytochrome C from mitochondrial membranes and its interaction with APAF-1 (the homolog of the Caenorhabditis e. CED-4) and with caspase 9, that initiates the proteolitic cascade (1,2). The conclusion is that apoptosis is a very important process, but yet poorly known in molecular details, in spite of the efforts of many scientists. Even the role of bcl-2, the main gene protecting from apoptosis, is still unknown. We close this chapter with a list of ten different technical approaches that can be useful tools to study apoptosis, and tracing the molecular principles on which they are based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceccibum F,m Akvarez-Balado, G., Meyer, B. I., Roth, K. A., and Gruss, P. (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737.

    Article  Google Scholar 

  2. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemre, E. S., and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91 (4), 479–489.

    Article  PubMed  CAS  Google Scholar 

  3. Hale, A. J., Smith, C. A., Sutherland, L. C., Stoneman, V. E., Longthorne, V., Culhane, A. C., and Williams, G. T. (1996) Apoptosis: molecular regulation of cell death. Eur. J. Biochem. 236, 1–26.

    Article  PubMed  CAS  Google Scholar 

  4. Vaux, D. L. and Strasser, A. (1996) The molecular biology of apoptosis. Proc. Natl. Acad. Sci. USA 93, 2239–2244.

    Article  PubMed  CAS  Google Scholar 

  5. Vaux, D. L., Weissman, I. L., and Kim, S. K. (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957.

    Article  PubMed  CAS  Google Scholar 

  6. Ellis, R. E., Yuan, J. Y., and Horvitz, H. R. (1991) Mechanisms of functions of cell death. Ann. Rev. Cell. Biol. 7, 663–698.

    PubMed  CAS  Google Scholar 

  7. Yuan, J., Shahan, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652.

    Article  PubMed  CAS  Google Scholar 

  8. Miura, M., Zhu, H., Rotello, R., Hartwiegh, E. A., and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660.

    Article  PubMed  CAS  Google Scholar 

  9. Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S. (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J. Biol. Chem. 269, 30,761–30,764.

    CAS  Google Scholar 

  10. Munday, N. A., Villancourt, J. P., Ali, A., et al. (1995) Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII members of the ICE/CED-3 family of cysteine proteases. J. Biol. Chem. 270, 15,870–15,876.

    CAS  Google Scholar 

  11. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347.

    Article  PubMed  CAS  Google Scholar 

  12. Itoh, N., and Nagata, S. (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J. Biol. Chem. 268, 10,932–10,937.

    CAS  Google Scholar 

  13. Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F., O’Rourke, K., Kischkel, F. C., et al. (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J. Biol. Chem. 271, 4961–4965.

    Article  PubMed  CAS  Google Scholar 

  14. Chinnaiyan, A. M., O’Rourke, K., Yu, G. L., et al. (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274, 990–992.

    Article  PubMed  CAS  Google Scholar 

  15. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355–365.

    Article  PubMed  CAS  Google Scholar 

  16. Fisher, G. H., Rosenberg, F. J, Straus, S. E., et al. (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka, M., Suda, T., Haze, K., et al. (1996) Fas ligand in human serum. Nat. Med. 2, 317–322.

    Article  PubMed  CAS  Google Scholar 

  18. Bottino, C., Tambussi, G., Ferrini, S., et al. (1988) Two subsets of human T lymphocytes expressing gamma/delta antigen receptor are identifiable by monoclonal antibodies directed to two distinct molecular forms of the receptor. J. Exp. Med. 168, 491–505.

    Article  PubMed  CAS  Google Scholar 

  19. Cohen, J. J. (1993) Apoptosis. Immunol. Today 14, 126–130.

    Article  PubMed  CAS  Google Scholar 

  20. Curnow, S. J., Glennie, M. J., and Stevenson, G. T. (1993) The role of apoptosis in antibody-dependent cellular cytotoxicity. Cancer Immunol. Immunother. 36, 149–155.

    Article  PubMed  CAS  Google Scholar 

  21. Cleary, M. L., Smith, S. D., and Sklar, J. (1986) Cloning and structural analysis of cDNAs for bcl-2 and hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47, 19–28.

    Article  PubMed  CAS  Google Scholar 

  22. Magrath, I. (1990) The pathogenesis of Burkitt’s lymphoma. Adv. Cancer Res. 55, 133–270.

    Article  PubMed  CAS  Google Scholar 

  23. Okan, I., Wang, Y., Chen, F., et al. (1995) The EBV-encoded LMP1 protein inhibits p53-triggered apoptosis but not growth arrest. Oncogene 11, 1027–1031.

    PubMed  CAS  Google Scholar 

  24. Silins, S. L. and Sculley, T. B. (1995) Burkitt’s lymphoma cells are resistant to programmed cell death in the presence of the Epstein-Barr virus latent antigen EBNA-4. Int. J. Cancer 60, 65–72.

    Article  PubMed  CAS  Google Scholar 

  25. Yonish-Rouach, E., Grunwald, D., et al. (1993) p53-mediated cell death: relationship to cell cycle control. Mol. Cell. Biol. 13, 1415–1423.

    PubMed  CAS  Google Scholar 

  26. Matulonis, U., Salgia, R., Okuda, K., Druher, B., and Griffin, J. D. (1993) Interleukin-3 and p210 BCR/ABL activate both unique and overlapping pathways of signal transduction in a factor-dependent cell line. Exp. Hematal. 21, 1460–1466.

    CAS  Google Scholar 

  27. Cheng, J., Zhou, T., Liu, C., et al. (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263, 1759–1762.

    Article  PubMed  CAS  Google Scholar 

  28. Strasser. A., Harris, A. W., and Cory, S. (1991) bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899.

    Article  PubMed  CAS  Google Scholar 

  29. Rajapaksa, R., Ginzton, N., Rott, L. S., and Greenberg, P. L. (1996) Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells. Blood 88, 4275–4287.

    PubMed  CAS  Google Scholar 

  30. Yoshida, Y. (1993) Hypothesis: apoptosis may be the mechanism responsible for the premature intramedullary cell death in the myelodysplastic syndrome. Leukemia 7, 144–146.

    PubMed  CAS  Google Scholar 

  31. Cotter, T. G., Glynn, J. M., Echeverri, F., and Green, D. R. (1992) The induction of apoptosis by chemoterapeutic agents occurs in all phases of the cell cycle. Anticancer Res. 12, 773–779.

    PubMed  CAS  Google Scholar 

  32. Thompson, C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  33. Groux, H., Torpier, G., Monte, D., Mouton, Y., Capron, A., and Amisen, J. C. (1992) Activation-induced death by apoptosis in CD4+ T cells from human immuno-deficiency virus-infected asymptomatic individuals. J. Exp. Med. 175, 331–340.

    Article  PubMed  CAS  Google Scholar 

  34. Magnelli, L., Cinelli, M., and Chiarugi, V. (1995) Phorbol esters attenuate the expression of p53 in cells treated with doxorubicin and protect TS-p53/K562 from apoptosis. Biochem. Biophys. Res. Commun. 215, 641–645.

    Article  PubMed  CAS  Google Scholar 

  35. Magnelli, L., Cinelli, M., and Chiarugi, V. (1993) Apoptosis induction in 32D cells by IL-3 withdrawal is preceded by a drop in the intracellular calcium level. Biochem. Biophys. Res. Commun. 194, 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  36. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  PubMed  CAS  Google Scholar 

  37. Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., and Traganos, F. (1997) Cytometry in cell necrobiology: analisis of apoptosis and accidental cell death necrosis. Cytometry 27, 1–20.

    Article  PubMed  CAS  Google Scholar 

  38. Frankfurt, O. S. (1999) Immunoassay for single-stranded DNA in apoptotic cells. Methods Mol. Biol. 113, 621–631.

    PubMed  CAS  Google Scholar 

  39. Homburg, C. H., de Haas, M., von der Borne, A. E., Verhoeven, A. J., Reutelingsperger, C. P., and Roos, D. (1995) Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood 85, 532–540.

    PubMed  CAS  Google Scholar 

  40. D’Mello, S. R., Aglieco, F., Roberts, M. R., Borodezt, K., and Haycock, J. W. (1998) A DEVD-inhibited caspase other than CPP32 is involved in the committment of cerebellar granule neurons to apoptosis induced by K+ deprivation. J. Neurochem. 70, 1809–1818.

    Article  PubMed  CAS  Google Scholar 

  41. Kumar, S. and Colussi, P. A. (1999) Prodomains—adaptors—oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochem. Sci. 24, 1–4.

    Article  PubMed  CAS  Google Scholar 

  42. Thornberry, N. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  43. Smith, M. J., and Trapani, J. A. (1995) Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol. Today 16, 202–206.

    Article  Google Scholar 

  44. Hahne, M., Peitsch, M. C., Irmler, M., et al. (1995) Characterization of the non-functional Fas ligand of gld mice. Int. Immunol. 7, 1381–1386.

    Article  PubMed  CAS  Google Scholar 

  45. Hahne, M., Rimoldi, D., Scrhoter, M., et al. (1996) Melanoma cell expression of Fas (APO-1/CD95) ligand: implications for tumor immune escape. Science 274, 1363–1366.

    Article  PubMed  CAS  Google Scholar 

  46. Thilenius, A. R., Braun, K., and Russell, J. H. (1997) Agonist antibody and Fas ligand mediate different sensitivity to death in the signalling pathway of Fas and cytoplasmic mutants. Eur. J. Immunol. 27, 1108–1114.

    Article  PubMed  CAS  Google Scholar 

  47. Hannun, Y. A. and Obeid, L. M. (1995) Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20, 73–77.

    Article  PubMed  CAS  Google Scholar 

  48. Hannun, Y. A. (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274, 1855–1959.

    Article  PubMed  CAS  Google Scholar 

  49. Pepper, J. S., Montesano, R., Mandriota, S. J., Orci, L., and Vassalli, J. D. (1996) Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49, 138–162.

    PubMed  CAS  Google Scholar 

  50. Rosen, A., Casciold-Rosen, L. (1997) Macromolecular substrates for the ICE-like proteases during apoptosis. J. Biol. Chem. 64, 50–54.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Chiarugi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarugi, V., Cinelli, M., Magnelli, L. et al. Apoptosis: Molecular regulation of cell death and hematologic malignancies. Mol Biotechnol 20, 305–314 (2002). https://doi.org/10.1385/MB:20:3:305

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1385/MB:20:3:305

Index Entries