Skip to main content
Log in

Expression and fine mapping of murine vasoactive intestinal peptide receptor 1

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Vasoactive intestinal peptide (VIP) plays multiple roles in the nervous, endocrine, and immune systems as a neurotransmitter, a hormone, and a cytokine. VIP is widely distributed in neurons of the central and peripheral nervous systems (CNS/PNS), and recently has been found to be an important neuroprotective agent. VIP actions are mediated through specific G protein-coupled receptors. We have cloned the cDNA of VIP receptor subtype 1 (VIPR1+ or VPAC1) and have demonstrated the quantitative expression profile in mice. Fluorometric real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that VPAC1 is expressed in all tissues examined. Expression was highest in the small intestine and colon followed by the liver and brain. The high level of VPAC1 expression in forebrain and cerebellum suggests that VPAC1 may mediate the neuroprotective effect of VIP. We have refined the chromosomal localization of the mouse, rat, and human VPAC1 genes. This fine mapping of the VPAC1 gene extends the respective regions of synteny between the distal region of mouse chromosome 9, rat chromosome 8q32, and human chromosome 3p21.33-p21.31. Thus, VPAC1 constitutes a functional-positional candidate for the tumor-suppressor function mapped to human 3p22-p21 where loss-of-heterozygosity is observed in small-cell lung carcinoma (SCLC) cell lines and primary tumors. Availability of the cDNA sequences for mouse VPAC1 will facilitate the generation of VPAC1 null mutant animals. Such studies will ultimately enhance our understanding of the role of VIP in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamou J. E., Aiyar N., VanHorn S., and Elshourbagy N. A. (1995) Cloning and functional characterization of the human vasoactive intestinal peptide (VIP)-2 receptor. Biochem. Biophys. Res. Commun. 209, 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Arimura A. and Said S. I. (1996) VIP, PACAP, and Related Peptides Second International Symposium. Annals of the New York Academy of Sciences 805, 1–748. The New York Academy of Sciences, New York.

    Google Scholar 

  • Barbezat G. and Grossman M. (1971) Intestinal secretion: stimulation by peptides. Science 174, 422–424.

    Article  PubMed  CAS  Google Scholar 

  • Beed E. A., O’Dorisio M. S., O’Dorisio T. M., and Gaginella T. S. (1983) Demonstration of a functional receptor for vasoactive intestinal polypeptide on Molt 4b T lymphoblasts. Regul. Pept. 6, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Bellinger D. L., Lorton D., Brouxhon S., Felten S., and Felten D. L. (1996) The significance of vasoactive intestinal polypeptide (VIP) in immunomodulation. Adv. Neuroimmunol. 6, 5–27.

    Article  PubMed  CAS  Google Scholar 

  • Bodnar M., Sarrieau A., Deschepper C. F., and Walker C. D. (1997) Adrenal vasoactive intestinal peptide participates in neonatal corticosteroid production in the rat. Am. J. Physiol. 273, R1163-R1172.

    PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Eiden L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc. Natl. Acad. Sci. USA 83, 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Hill J. M., and Gozes I. (1998) Vasoactive intestinal peptide in the central nervous system, in Psychopharmacology on CD ROM (Waston S. J., ed.), Lippincott Williams & Wilkins.

  • Brenneman D. E., Nicol T., Warren D., and Bowers L. M. (1990) Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen. J. Neurosi. Res. 25, 386–394.

    Article  CAS  Google Scholar 

  • Brookes S. J., Steele P. A., and Costa M. (1991) Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine. Neuroscience 42, 863–878.

    Article  PubMed  CAS  Google Scholar 

  • Couvineau A., Gaudin P., Maoret J. J., Rouyer-Fessard C., Nicole P., and Laburthe M. (1995) Highly conserved aspartate 68, tryptophane 73 and glycine 109 in the N-terminal extracellular domain of the human VIP receptor are essential for its ability to bind VIP. Biochem. Biophys. Res. Commun. 206, 246–252.

    Article  PubMed  CAS  Google Scholar 

  • Couvineau A., Rouyer-Fessard C., Maorett J. J., Gaudin P., Nicole P., and Laburthe M. (1996) Vasoactive intestinal peptide (VIP)1 receptor. J. Biol. Chem. 271, 12,795–12,800.

    CAS  Google Scholar 

  • Danek A., O’Dorisio M. S., O’Dorisio T. M., and George J. M. (1983) Specific binding sites for vasoactive intestinal polypeptide on nonadherent peripheral blood lymphocytes. J. Immunol. 131, 1173–1177.

    PubMed  CAS  Google Scholar 

  • Deloukas P., Schuler G. D., Gyapay G., Beasley E. M., Soderlund C., Rodriguez-Tome P., et al. (1998) A physical map of 30,000 human genes. Science 282, 744–746.

    Article  PubMed  CAS  Google Scholar 

  • Deng A. Y., Gu L., Rapp J. P., Szpirer C., and Szpirer J. (1994) Chromosomal assignment of 11 loci in the rat by mouse-rat somatic hybrids and linkage. Mamm. Genome 5, 712–716.

    Article  PubMed  CAS  Google Scholar 

  • El Gehani F., Tena-Sempere M., and Huhtaniemi I. (1998) Vasoactive intestinal peptide stimulates testosterone production by cultured fetal rat testicular cells. Mol. Cell. Endocrinol. 140, 175–178.

    Article  PubMed  Google Scholar 

  • Feramisco J. R., Glass D. B., and Krebs E. G. (1980) Optimal spatial requirements for the location of basic residues in peptide substrates for the cyclic AMP-dependent protein kinase. J. Biol. Chem. 255, 4240–4245.

    PubMed  CAS  Google Scholar 

  • Festoff B. W., Nelson P. G., and Brenneman D. E. (1996) Prevention of activity-dependent neuronal death: vasoactive intestinal polypeptide stimulates astrocytes to secrete the thrombin-inhibiting neurotrophic serpin, protease nexin I. J. Neurobiol. 30, 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Frühwald M. C., O’Dorisio M. S., Fleitz J., Summers M. A., Pietsch T., and Reubi J.-C. (1999) Expression of vasoactive intestinal peptide receptors in central and peripheral primitive neuroectodermal tumors of childhood. Int. J. Cancer 81, 165–173.

    Article  PubMed  Google Scholar 

  • Fujieda S., Waschek J. A., Zhang K., and Saxon A. (1996) Vasoactive intestinal peptide induces S(alpha)/S(mu) switch circular DNA in human B cells. J. Clin. Invest. 98, 1527–1532.

    Article  PubMed  CAS  Google Scholar 

  • Furness J. B., Lloyd K. C., Sternini C., and Walsh J. H. (1990) Projections of substance P, vasoactive intestinal peptide and tyrosine hydroxylase immunoreactive nerve fibres in the canine intestine, with special reference to the innervation of the circular muscle. Arch. Histol. Cytol. 53, 129–140.

    PubMed  CAS  Google Scholar 

  • Ganea D. (1996) Regulatory effects of vasoactive intestinal peptide on cytokine production in central and peripheral lymphoid organs. Adv. Neuroimmunol. 6, 61–74.

    Article  PubMed  CAS  Google Scholar 

  • Ganea D. and Sun L. (1993) Vasoactive intestinal peptide downregulates the expression of IL-2 but not of IFN-γ from stimulated murine T lymphocytes. J. Neuroimmunol. 47, 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Gazdar A. F., Bader S., Hung J., Kishimoto Y., Sekido Y., Sugio K., et al. (1994) Molecular genetic changes found in human lung cancer and its precursor lesions. Cold Spring Harb. Symp. Quant. Biol. 59, 565–572.

    PubMed  CAS  Google Scholar 

  • Gether U. (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (1989) VIP: molecular biology and neurobiological function. Mol. Neurosci. 3, 201–236.

    CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (2000) A new concept in the pharmacology of neuroprotection. Mol. Neurosci. 14, 61–68.

    Article  CAS  Google Scholar 

  • Grand R. J. (1989) Acylation of viral and eukaryotic proteins. Biochem. J. 258, 625–638.

    PubMed  CAS  Google Scholar 

  • Gressens P., Hill J. M., Gozes I., Fridkin M., and Brenneman D. E. (1993) Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 362, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Gyapay G., Schmitt K., Fizames C., Jones H., Vega-Czarny N., Spillett D., et al. (1996) A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Harmar A. J., Arimura A., Gozes I., Journot L., Laburthe M., Pisegna J. R., et al. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol. Rev. 50, 265–270.

    PubMed  CAS  Google Scholar 

  • Hashimoto H., Nishino A., Shintani N., Hagihara N., Copeland N. G., Jenkins N. A., et al. (1999) Genomic organization and chromosomal location of the mouse vasoactive intestinal polypeptide 1 (VPAC1) receptor. Genomics 58, 90–93.

    Article  PubMed  CAS  Google Scholar 

  • Heistad D. D., Marcus M. L., Said S. I., and Gross P. M. (1980) Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am. J. Physiol. 239, H73-H80.

    PubMed  CAS  Google Scholar 

  • Holzwarth M. A. (1984) The distribution of vasoactive intestinal peptide in the rat adrenal cortex and medulla. J. Auton. Nerv. Syst. 11, 269–283.

    Article  PubMed  CAS  Google Scholar 

  • Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., et al. (1995) An STS-based map of the human genome. Science 270, 1945–1954.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T., Shigemoto R., Mori K., and Takahashi K. (1992) Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8, 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Jabrane-Ferrat N., Bloom D., Wu A., Li L., Lo D., Sreedharan S. P., Turck C. W., and Goetzl E. J. (1999) Enhancement by vasoactive intestinal peptide of γ-interferon production by antigen-stimulated type 1 helper T cells. FASEB J. 13, 347–353.

    PubMed  CAS  Google Scholar 

  • Johnson M. C., McCormack R. J., Delgado M., Martinez C., and Ganea D. (1996) Murine T-lymphocytes express vasoactive intestinal peptide receptor 1 (VIP-R1) mRNA. J. Neuroimmunol. 68, 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Juppner H. and Hesch R. D. (1991) Biochemical characterization of cellular hormone receptors. Curr. Top. Pathol. 83, 53–69.

    PubMed  CAS  Google Scholar 

  • Kar S., Hasegawa K., and Carr B. I. (1996) Comitogenic effects of vasoactive intestinal polypeptide on rat hepatocytes. J. Cell Physiol. 168, 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Karacay B., O’Dorisio M. S., Summers M., and Bruce, J. (2000) Regulation of vasoactive intestinal peptide receptor expression in developing nervous system. Ann. NY Acad. Sci. 9, 165–174.

    Google Scholar 

  • Kozak M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19,867–19,870.

    CAS  Google Scholar 

  • Lara-Marquez M. L., O’Dorisio M. S., O’Dorisio T. M., Shah M. H., and Karacay B. (2001) Selective gene expression and activation-dependent regulation of VIP type 1 (VPAC1) and type 2 (VPAC2) in human T-cells. J. Immun. 166, 2522–2530.

    PubMed  CAS  Google Scholar 

  • Lissbrant E. and Bergh A. (1997) Effects of vasoactive intestinal peptide (VIP) on the testicular vasculature of the rat. Int. J. Androl. 20, 356–360.

    Article  PubMed  CAS  Google Scholar 

  • Lutz E., Sheward W. J., West K. M., Morrow J. A., Fink G., and Harmar A. J. (1997) The VIP2 receptor: Molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. Fed. Euro. Biochem. Soc. 334, 3–8.

    Google Scholar 

  • Magistretti P. J., Morrison J. H., Shoemaker W. J., Sapin V., and Bloom F. E. (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc. Natl. Acad. Sci. USA 78, 6535–6539.

    Article  PubMed  CAS  Google Scholar 

  • Marshall R. D. (1972) Glycoproteins. Annu. Rev. Biochem. 41, 673–702.

    Article  PubMed  CAS  Google Scholar 

  • Maruno K., Absood A., and Said S. I. (1998) Vasoactive intestinal peptide inhibits human small-cell lung cancer proliferation in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95, 14,373–14,378.

    Article  CAS  Google Scholar 

  • Maruno K. and Said S. I. (1996) VIP inhibits the proliferation of small-cell and non-small-cell lung carcinoma. Ann. NY Acad. Sci. 805, 389–392.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy L., Hunter K., Schalkwyk L., Riba L., Anson S., Mott R., et al. (1995) Efficient high-resolution genetic mapping of mouse interspersed repetitive sequence PCR products, toward integrated genetic and physical mapping of the mouse genome. Proc. Natl. Acad. Sci. USA 92, 5302–5306.

    Article  PubMed  CAS  Google Scholar 

  • McNeill Killary A., Wolf M. E., Giambernardi T. A., and Naylor S. L. (1992) Definition of a tumor suppressor locus within human chromosome 3p21-22. Proc. Natl. Acad. Sci. USA 89, 10,877–10,881.

    Google Scholar 

  • McPherson G. A. (1985) Analysis of radioligand binding experiments: a collection of computer programs for the IBM PC. J. Pharmacol. Meth. 14, 213–228.

    Article  CAS  Google Scholar 

  • Messenger J. P. and Furness J. B. (1990) Projections of chemically-specified neurons in the guinea-pig colon. Arch. Histol. Cytol. 53, 467–495.

    PubMed  CAS  Google Scholar 

  • Miano J. M., Garcia E., and Krahe R. (1999) High resolution radiation hybrid (RH) mapping of human smooth muscle-restricted genes, in Molecular Biology of Vascular Diseases (Methods in Molelcular Medicine Series) (Baker A. H., ed.), Humana Press, Totowa, NJ.

    Google Scholar 

  • Munson P. J. and Rodbard D. (1980) LIGAND: A versatile computerized approach for the characterization of ligand binding systems. Anal. Biochem. 107, 220–239.

    Article  PubMed  CAS  Google Scholar 

  • Nicole P., Du K., Couvineau A., and Laburthe M. (1998) Site-directed mutagenesis of human vasoactive intestinal peptide receptor subtypes VIP1 and VIP2: evidence for difference in the structure-function relationship. J. Pharmacol. Exp. Ther. 284, 744–750.

    PubMed  CAS  Google Scholar 

  • O’Dorisio M. S., Fleshman D. J., Qualman S. J., and O’Dorisio T. M. (1992) Vasoactive intestinal peptide: autocrine growth factor in neuroblastoma. Regul. Pept. 37, 213–226.

    Article  PubMed  CAS  Google Scholar 

  • O’Dorisio M. S., Vasiloff J., Campolito L. B., Beattie M. S., and Bresnahan J. C. (1988) Characterization of the VIP receptor in rat frontal cortex. Neurosci. Res. Comm. 2, 19–28.

    CAS  Google Scholar 

  • Offen D., Sherki Y., Melamed E., Fridkin M., Brenneman D. E., and Gozes I. (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res. 854, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Park S. K., Olson T. A., Ercal N., Summers M., and O’Dorisio M. S. (1996) Characterization of vasoactive intestinal peptide receptors on human megakaryocytes and platelets. Blood 87, 4629–4635.

    PubMed  CAS  Google Scholar 

  • Pei L. (1997) Genomic structure and embryonic expression of the rat type 1 vasoactive intestinal polypeptide receptor gene. Regul. Pept. 71, 153–171.

    Article  PubMed  CAS  Google Scholar 

  • Pence J. C. and Shorter N. A. (1990) In vitro differentiation of human neuroblastoma cells caused by vasoactive intestinal peptide. Cancer Res. 50, 5177–5183.

    PubMed  CAS  Google Scholar 

  • Pincus D. W., DiCicco-Bloom E. M., and Black I. B. (1990) Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts. Nature 343, 564–567.

    Article  PubMed  CAS  Google Scholar 

  • Pinna L. A. (1990) Casein kinase 2: an ‘eminence grise’ in cellular regulation. Biochim. Biophys. Acta. 1054, 267–284.

    Article  PubMed  CAS  Google Scholar 

  • Piper P. J., Said S. I., and Vane J. R. (1970) Effects on smooth muscle preparations of unidentified vasoactive peptides from intestine and lung. Nature 225, 1144–1146.

    Article  PubMed  CAS  Google Scholar 

  • Said S. I. (1995) Vasoactive intestinal peptide, in Airways Smooth Muscle: Peptide Receptors, Ion Channels and Signal Transduction (Raebum D. and Giembycz M. A., eds.), Birkhauser Verlag, Basel, Switzerland, pp. 87–113.

    Google Scholar 

  • Said S. I. and Dickman K. G. (2000) Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul. Pept. 93, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Said S. I. and Mutt V. (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169, 1217–1218.

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan S. P., Huang J.-X., Cheung M. H., and Geotzl E. J. (1995) Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Proc. Natl. Acad. Sci. USA 92, 2939–2943.

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan S. P., Patel D. R., Huang J. X., and Goetzl E. J. (1993) Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem. Biophys. Res. Commun. 193, 546–553.

    Article  PubMed  CAS  Google Scholar 

  • Steen R. G., Kwitek-Black A. E., Glenn C., Gullings-Handley J., Van Etten W., Atkinson O. S., et al. (1999) A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat [published erratum appears in Genome Res. 1999 8, 793]. Genome Res. 9, AP1-AP8 (insert).

    PubMed  CAS  Google Scholar 

  • Szpirer C., Szpirer J., Van Vooren P., Tissir F., Simon J. S., Koike G., et al. (1998) Gene-based anchoring of the rat genetic linkage and cytogenetic maps: new regional localizations, orientation of the linkage groups, and insights into mammalian chromosome evolution. Mamm. Genome 9, 721–734.

    Article  PubMed  CAS  Google Scholar 

  • Towler D. A., Gordon J. I., Adams S. P., and Glaser L. (1988) The biology and enzymology of eukaryotic protein acylation. Annu. Rev. Biochem. 57, 69–99.

    Article  PubMed  CAS  Google Scholar 

  • Usdin T., Bonner T. I., and Mezey E. (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135, 2622–2680.

    Article  Google Scholar 

  • Waelbroeck M., Robberecht P., De Neef P., Chatelain P., and Christophe J. (1981) Binding of vasoactive intestinal peptide and its stimulation of adenylate cyclase through two classes of receptors in rat liver membranes. Effects of 12 secretin analogues and 2 secretin fragments. Biochim. Biophys. Acta 678, 83–90.

    PubMed  CAS  Google Scholar 

  • Wang H.-Y., Xin Z., Tang H., and Ganea D. (1996) Vasoactive intestinal peptide inhibits IL-4 production in murine T cells by a post-transcriptional mechanism. J. Immunol. 156, 3243–3253.

    PubMed  CAS  Google Scholar 

  • Wei M. H., Latif F., Bader S., Kashuba V., Chen J. Y., Duh F. M., et al. (1996) Construction of a 600-kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene (TSG) locus on human chromosome 3p21.3: progress toward the isolation of a lung cancer TSG. Cancer Res. 56, 1487–1492.

    PubMed  CAS  Google Scholar 

  • Whang-Peng J., Bunn P. A. Jr., Kao-Shan C. S., Lee E. C., Carney D. N., Gazdar A., and Minna J. D. (1982a) A nonrandom chromosomal abnormality, del 3p(14–23), in human small cell lung cancer (SCLC). Cancer Genet. Cytogenet. 6, 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Whang-Peng J., Kao-Shan C. S., Lee E. C., Bunn P. A., Carney D. N., Gazdar A. F., and Minna J. D. (1982b) Specific chromosome defect associated with human small-cell lung cancer; deletion 3p(14–23). Science 215, 181–182.

    Article  PubMed  CAS  Google Scholar 

  • Woodgett J. R., Gould K. L., and Hunter T. (1986) Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur. J. Biochem. 161, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Yokota C., Kawai K., Ohashi S., Watanabe Y., and Yamashita K. (1995) PACAP stimulates glucose output from the perfused rat liver. Peptides 16, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman R. P., Gates T. S., Mantyh C. R., Vigna S. R., Welton M. L., Passaro E. P. Jr., and Mantyh P. W. (1989) Vasoactive intestinal polypeptide receptor binding sites in the human gastrointestinal tract: localization by autoradiography. Neuroscience 31, 771–783.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.Sue O’Dorisio.

Additional information

The nomenclature for the VIP family of receptors has recently been formalized (Harmar et al., 1998), with subtype 1 VIP receptor (previously described as VIPR1) designated as VPAC1. We have used this new nomenclature throughout the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karacay, B., O’Dorisio, M., Kasow, K. et al. Expression and fine mapping of murine vasoactive intestinal peptide receptor 1. J Mol Neurosci 17, 311–324 (2001). https://doi.org/10.1385/JMN:17:3:311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:3:311

Index Entries

Navigation