Skip to main content
Log in

Molecular mapping of epitopes involved in ligand activation of the human receptor for the neuropeptide, VIP, based on hybrids with the human secretin receptor

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Receptors for the neurotransmitter and neuroendocrine peptides, vasoactive intesinal peptide (VIP) and secretin, both belong to the Type B subfamily of G-protein-coupled receptors. This group is evolutionally as well as structurally distinct from the much larger Type A, or rhodopsin-type, subfamily. We have mapped the ligand-activating epitopes of the human VIP1 receptor by the use of hybrid receptor constructs with the human secretin receptor. Twelve chimeras were synthesized by successively replacing portions of the former receptor with corresponding portions of the latter receptor, or by interchanging the first extracellular loops. Each of the different chimeric receptor DNAs were then expressed in murine reporter cells, and their ability to activate cAMP production was investigated on stimulation with the respective natural peptide ligands. We stimulated the reporter cells with secretin or VIP following transient expression of the receptor chimeras. The experiments indicated that there are two molecular domains of importance for the recognition and activation of these peptides, namely, the inner portion of the extracellular tail and the first extracellular loop of the two receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arimura A. and Said S. S., eds. (1996) VIP, PACAP, and related peptides. Ann. NY Acad. Sci. 805, 1–792.

  • Beaubien B., Tippins J. R., and Morris H. R. (1984) Platelet-activating factor stimulation of peptidoleukotriene release: inhibition by vasoactive polypeptide. Biochem. Biophys. Res. Com. 125, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Barik S. and Galinski M. S. (1991) “Megaprimer” method of PCR: increased template concentration improves yield. BioTechniques 10, 489,490.

    PubMed  CAS  Google Scholar 

  • Bolin D. R., Michalewsky J., Wasserman M. A., and O’Donnel M. (1995) Design and development of a vasoactive intestinal peptide analog as a novel therapeutic for bronchial asthma. Biopolymers 37, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Buggy J. J., Livingston J. N., Rabin D., and Warren H. Y. (1995) Glucagon, glucagon-like peptide I receptor chimeras reveal domains that determine specificity of glucagon binding. J. Biol. Chem. 270, 7474–7478.

    Article  PubMed  CAS  Google Scholar 

  • Gether U., Johansen T. E., and Schwartz T. W. (1993) Chimeric NK1 (substance P)/NK3 (neurokinin B) receptors. Identification of domains determining the binding specificity of tachykinin agonists. J. Biol. Chem. 268, 7893–7898.

    PubMed  CAS  Google Scholar 

  • Gourlet P., Vilardaga J.-P., De Neef P., Waelenbroeck M., Vandemeers A., and Robberecht P. (1996) The C-terminus ends of secretin and VIP interact with the N-terminal domains of their receptors. Peptides 17, 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Hjorth S. A., Adelhorst K., Pedersen Brogaard B., Kirk O., and Schwartz T. (1994) Glucagon and glucagon-like peptide 1: selective receptor recognition via distinct peptide epitopes. J. Biol. Chem. 269, 30,121–30,124.

    CAS  Google Scholar 

  • Holtmann M. H., Hadac E. M., and Miller L. J. (1995) Critical contributions of amino-terminal extracellular domains in agonist binding and activation of secretin and vasoactive intestinal polypeptide receptors. Studies of chimeric receptors. J. Biol. Chem. 270, 14,394–14,398.

    CAS  Google Scholar 

  • Horton R. M., Cai Z., Ho S. N., and Pease L. R. (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques 8, 528–535.

    PubMed  CAS  Google Scholar 

  • König M., Mahan L. C., Marsh J. W., Fink J. S., and Brownstein M. J. (1991) Method for identifying ligands that bind to cloned Gs- or Gi - coupled receptors. Mol. Cell. Neurosci. 2, 331–337.

    Article  PubMed  Google Scholar 

  • Lardelli M. and Lendahl U. (1994) Generating bacteriophage lambda sublibraries enriched for rare clones. BioTechniques 16, 420–422.

    PubMed  CAS  Google Scholar 

  • Lefebre B., Formstecher P., and Lefebre P. (1995) Improvement of the gene splicing overlap (SOE) method. BioTechniques 19, 186–188.

    Google Scholar 

  • Ollerenshaw S., Jarvis D., Woolcock A., Sullivan C., and Scheibner T. (1989) Absence of immunoreactive intestinal polypeptide in tissue from the lungs of patients with asthma. New Engl. J. Med. 320, 1244–1248.

    Article  PubMed  CAS  Google Scholar 

  • Patel D. P., Kong Y., and Sreedharan S. P. (1995) Molecular cloning and expression of a human secretin receptor. Mol. Pharm. 47, 467–473.

    CAS  Google Scholar 

  • Pont-Kingdon G. (1994) Construction of chimeric molecules by a two-step recombinant PCR method. BioTechniques 16, 1010,1011.

    PubMed  CAS  Google Scholar 

  • Sarkar G. and Sommer S. S. (1990) The “megaprimer” method of site-directed mutagenesis. BioTechniques 8, 404–407.

    PubMed  CAS  Google Scholar 

  • Segre G. V. and Goldring S. R. (1993) Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone and glucagon belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol. Metab. 4, 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Tams J., Knudsen S. M., and Fahrenkrug J. (1998) Proposed arrangement of the seven transmembrane helices in the secretin receptor family. Rec. Channels 5, 79–90.

    CAS  Google Scholar 

  • Trotz M. E. and Said S. L. (1993) Vasoactive intestinal peptide and helodermin inhibit phospholipase A2 activity in vitro. Regul. Pept. 48, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Vilardaga J-P., De Neef P., Di Paolo E., Bollen A., Waelbroeck M., and Robberecht P. (1995) Properties of chimeric secretin and VIP receptor proteins indicate the importance of the N-terminal domain for ligand discrimination. Biochem. Biophys. Res. Commun. 211, 885–891.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olde, B., Sabirsh, A. & Owman, C. Molecular mapping of epitopes involved in ligand activation of the human receptor for the neuropeptide, VIP, based on hybrids with the human secretin receptor. J Mol Neurosci 11, 127–134 (1998). https://doi.org/10.1385/JMN:11:2:127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:11:2:127

Index Entries

Navigation