Skip to main content

Advertisement

Log in

Regulation of tumor growth by IFN-γ in cancer immunotherapy

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Tumor immunity involves a concerted interplay between cytokines and effector cells. Extensive efforts have focused on understanding the roles of cytokines and their interactions with effector cells for the production of effective tumor immunity. One cytokine that is well recognized to play a central role in coordinating tumor immune responses is IFN-γ. IFN-γ exerts its biological effects through interaction with an IFN-γ receptor that isubiquitously expressed on nearly all cells. In this review, we discuss the positive and negative effects of IFN-γ signaling in the tumor cell on tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach EA, Aguet M, Schreiber RD: The IFN-γ receptor: A paradigm for cytokine receptor signaling. Annu Rev Immunol 1997; 15:563.

    Article  PubMed  CAS  Google Scholar 

  2. Dighe AS, Farrar MA, Schreiber RD: Inhibition of cellular responsiveness to interferon-γ (IFNγ) induced by overexpression of inactive forms of the IFNγ receptor. J Biol Chem 1993;268:10,645.

    CAS  Google Scholar 

  3. Kaplan DH, Shankaran V, Dighe AS, et al.: Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 1998;95:7556.

    Article  PubMed  CAS  Google Scholar 

  4. Taniguchi T: Transcription factors IRF-1 and IRF-2: Linking the immune responses and tumor suppression. J Cell Physiol 1997; 173:128.

    Article  PubMed  CAS  Google Scholar 

  5. Nozawa H, Oda E, Ueda S, et al.: Functionally inactivating point mutation in the tumor-suppressor IRF-1 gene identified in human gastric cancer. Int J Cancer 1998; 77:522.

    Article  PubMed  CAS  Google Scholar 

  6. Nastala CL, Edington HD, McKinney TG, et al.: Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J Immunol 1994;153:1697.

    PubMed  CAS  Google Scholar 

  7. Ogawa M, Yu WG, Umehara K, et al.: Multiple roles of interferon-γ in the mediation of interleukin 12-induced tumor regression. Cancer Res 1998;58:2426.

    PubMed  CAS  Google Scholar 

  8. Weiskirch LM, Pan Z-K, Paterson Y: The tumor recall response of antitumor immunity primed by a live, recombinant Listeria monocytogenes vaccine is comprised of multiple effector mechanisms. Clin Immunol 2001; (In press).

  9. Dighe AS, Richards E, Old LJ, Schreiber RD: Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFNγ receptors. Immunity 1994;1:447.

    Article  PubMed  CAS  Google Scholar 

  10. Seliger B, Hohne A, Knuth A, et al.: Analysis of the major histocompatibility complex class 1 antigen presentation machinery in normal and malignant renal cells: evidence for deficiencies associated with transformation and progression. Cancer Res 1996;56: 1756.

    PubMed  CAS  Google Scholar 

  11. Seliger B, Hammers S, Hohme A, et al.: IFN-gamma-media ledcoor-dinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin Cancer Res 1997; 3:573.

    PubMed  CAS  Google Scholar 

  12. Webber JS, Rosenberg SA: Modulation of murine tumor major histocompatibility antigens by cytokines in vivo and in vitro. Cancer Res 1998;48:5818.

    Google Scholar 

  13. Ritter M, Huber C, Aubock J, et al.: Lytic susceptibility of target cells to cytotoxic T cells is determined by their constitutive major histocompatibility complex class I atigen expression and cytokine-induced activation status. Immunology 1994;81:569.

    PubMed  CAS  Google Scholar 

  14. Boraschi D, Censini S, Tagliablue A: Interferon-gamma reduces macrophage-suppressive activity by inhibiting prostaglandin E2 release and inducing interleukin 1 production. J Immunol 1984; 133:764.

    PubMed  CAS  Google Scholar 

  15. Naganuma H, Sasaki A, Satoh E, et al.: Down-regulation of transforming growth factor-beta and interleukin-10 secretion from malignant glioma cells by cytokines and anticancer drugs. J Neurooncol 1998;39:227.

    Article  PubMed  CAS  Google Scholar 

  16. Torre-Amione G, Beauchamp RD, Koeppen H, et al.: A highly immunogenic tumor transfected with a murine transforming growth factor type β1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 1990;87:1486.

    Article  PubMed  CAS  Google Scholar 

  17. Tamenbaum CS, Tubbs R, Armstrong D, Finke JH, Bukowski RM, Hamilton TA: The CXC chemokines 1P-10 and Migrane necessary for IL-12-mediated regression of the mouse RENCA tumor. J Immunol 1998;161:927.

    Google Scholar 

  18. Bukowski RM, Rayman P, Molto L, et al.: Interferon-gamma and CXC chemokine induction by interleukin 12 in renal cell carcinoma. Clin Cancer Res 1999; 5:2780.

    PubMed  CAS  Google Scholar 

  19. Mukai S, Kjaergaard J, Shu S, Plautz GE: Infiltration of tumors by systemically tranferred tumor-reactive T lymphocytes is required forantitumor efficacy. Cancer Res. 1999;59:5245.

    PubMed  CAS  Google Scholar 

  20. Springer TA Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301.

    Article  PubMed  CAS  Google Scholar 

  21. Butcher EC, Picker LJ: Lymphocyte homing and homeostasis. Science. 1996;272:60.

    Article  PubMed  CAS  Google Scholar 

  22. Kunz M, Toksoy A, Goebeler M, Engelhardt E, Brocker E.-B.. Gillitzer R: Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J Pathol. 1999;189:552.

    Article  PubMed  CAS  Google Scholar 

  23. Sgadari C, Angiolillo AL, Tosato G: Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein-10. Blood. 1996;87:3877.

    PubMed  CAS  Google Scholar 

  24. Coughlin CM, Salhany KE, Gee MS, et al.: Tumor cell responses to IFN-γ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998;9:25.

    Article  PubMed  CAS  Google Scholar 

  25. Majewski S, Marczak M, Szmurlo A, Jablonska S, Bollag W: Interleukin-12 inhibits angiogenesis induced by human tumor cell lines in vivo. J Invest Dermatol 1996; 106:1114.

    Article  PubMed  CAS  Google Scholar 

  26. Dias S, Boyd R, Balkwill F: IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer 1998;78:361.

    Article  PubMed  CAS  Google Scholar 

  27. Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ: Evidence for the involvement of endothelial cell integrin αvβ3 in the disruption of the tumor vasculature induced by TNF and IFN-γ. Nat Med 1998;4:408.

    Article  PubMed  CAS  Google Scholar 

  28. Beatty GL, Paterson Y: CD4+ T cells control early tumor development of a class 11 negative tumor through IFN-γ dependent inhibition of angiogenesis. J Immunol 2001; (in press).

  29. Qin Z, Blankenstein T: CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFNγ receptor expression by nonhematopoietic cells. Immunity 2000;12:677.

    Article  PubMed  CAS  Google Scholar 

  30. Beatty GL, Paterson Y: IFN-γ can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol 2000;165:5502.

    PubMed  CAS  Google Scholar 

  31. Morel S, Levy F, Burelet-Schlitz O, et al.: Processing of some antigens by the standard but not by the immun proteasome results in poor presentation by dendritic cells. Immunity 2000;12:107.

    Article  PubMed  CAS  Google Scholar 

  32. Maeurer MJ, Gollin SM, Martin D, et al.: Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with down regulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 1996;98:1633.

    PubMed  CAS  Google Scholar 

  33. Lee KH, Panelli MC, Kim CJ, et al.: Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J Immunol 1998;161:4183.

    PubMed  CAS  Google Scholar 

  34. Virelizier JL, Arenzana-Seisdedos F: Immunological functions of macrophages and their regulation by interferons. Med Biol 1985; 63:149.

    PubMed  CAS  Google Scholar 

  35. Germain RN, Margulies DH: The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 1993;11:403.

    Article  PubMed  CAS  Google Scholar 

  36. Kantor J, Tran R, Greiner J, et al.: Modulation of carcinoembryonic antigen messenger RNA levels in human colon carcinoma cells by recombinant human gamma-interferon. Cancer Res 1989;49: 2651.

    PubMed  CAS  Google Scholar 

  37. Greiner JW, Guadagni F, Goldstein D, et al.: Evidence for the elevation of serum carcinoembryonic antigen and tumor-associated glycoprotein-72 levels in patients administered interferons. Cancer Res 1991;51:4155.

    PubMed  CAS  Google Scholar 

  38. Mortarini R, Belli F, Parmiani G, Anichini, A: Cytokine-mediated modulation of HLA-class 11, ICAM-1, LFA-3 and tumor-associated antigen profile of melanoma cells. Comparison with anti-proliferative activity by rIL1-beta, rTNF-alpha, rIFN-gamma rIL4 and their contribution. Int J Cancer 1990;45:334.

    Article  PubMed  CAS  Google Scholar 

  39. Meyskens FL, Kopecky K, Samson M, et al.: Recombinant human interferon γ:adverse effects in high-risk stage I and II cutaneous malignant melanoma. J Natl Cancer Inst 1990;82:1071.

    Article  PubMed  Google Scholar 

  40. Kowalzick L, Weyer U, Lange P, Breitbart EW: Systemic therapy of advanced metastatic malignant melanoma with a combination of fibroblast interferon-beta and recombinant interferon-gamma. Dematologica 1990;181:298.

    Article  CAS  Google Scholar 

  41. Boehm U, Klamp T, Groot M, Howard JC: Cellular responses to interferon-γ. Annu Rev Immunol 1997;15:749.

    Article  PubMed  CAS  Google Scholar 

  42. Fransen L, Van Der Heyden J Ruysschaert R, Fiers W: Recombinant tumor necrosis factor: its effect and its synergism with interferon-gamma on a variety of normal and transformed human cell lines. Eur J Cancer Clin Oncol 1986;22:419.

    Article  PubMed  CAS  Google Scholar 

  43. Tsujimoto M, Yip YK, Vilcek J: Interferon-gamma enhances expression of cellular receptor for tumor necrosis factor. J Immunol 1986;136:2441.

    PubMed  CAS  Google Scholar 

  44. Yonehara S, Ishii A Yonehara M: A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigenco-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989;169:1747.

    Article  PubMed  CAS  Google Scholar 

  45. Ossina NK, Cannas A, Powers VC, et al.: Interferon-γ modulates a p53-independent apoptotic pathway and apoptosis-related gene expression. J Biol Chem 1997; 272:16351.

    Article  PubMed  CAS  Google Scholar 

  46. Croft M, Carter LL, Swain SL, Dutton RW: Generation of polarized antigen specific CD8 effector populations: reciprocal actions of IL-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med 1994;180:1715.

    Article  PubMed  CAS  Google Scholar 

  47. Sad S, Marcotte R, Mossmann TR: Cytokine induced differentiation of precursor mouse CD8 T cells into cytotoxic CD8 T cells secreting Th1 or Th2 cytokines. Immunity 1995;2:271.

    Article  PubMed  CAS  Google Scholar 

  48. Cerwenka A, Carter LL, Reome JB, Swain SL, Dutton RW: In vivo persistence of CD8 polarized T cell subsets producing type 1 or type 2 cytolines. J Immunol 1998;161: 97.

    PubMed  CAS  Google Scholar 

  49. Dobrzanski MJ, Reome JB, Dutton RW: Type 1 and type 2 CD8+ effector T cell subpopulation promote long-term tumor immunity and protection to progressively growing tumor. J Immunol 2000;164:916.

    PubMed  CAS  Google Scholar 

  50. Yao L, Sgadari C, Furuke K, Bloom ET, Teruya-Feldstein J, Tosato G: Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 1999;93: 1612.

    PubMed  CAS  Google Scholar 

  51. Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P: NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol 1987;138: 1657.

    PubMed  CAS  Google Scholar 

  52. Ljunggren HG, Sturmhofel K, Wolpert E, Hammerling GJ, Karre K: Transfection of beta 2-microglobulin restores IFN-mediated protection from natural killer cell lysis in YAC-I lymphoma variants. J Immunol 1990;145:380.

    PubMed  CAS  Google Scholar 

  53. Moretta A, Biassoni R, Bottino C, Moretta L: Surface receptors delivering opposite signals regulate the function of human NK cells. Semin Immunol 2000;12:129.

    Article  PubMed  CAS  Google Scholar 

  54. Mosmann TR, Cherwinski HM, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition accord-ing to profiles of lymphokineactivities and secreted proteins. J Immunol 1986;136:2348.

    PubMed  CAS  Google Scholar 

  55. Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR: Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific specific bioassays and monoclonal antibodies. J Exp Med 1987; 166:1229.

    Article  PubMed  CAS  Google Scholar 

  56. Nishimura T, Iwakabe K, Sekimoto M, et al.: Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 1999;190:617.

    Article  PubMed  CAS  Google Scholar 

  57. Tite J, Janeway Jr CA: Cloned helper T cell can kill B lymphoma cells in the presence of specific antigen. 1a restriction and cograte vs. noncognate interactions in cytolysis. Eur J Immunol 1984; 14:878.

    Article  PubMed  CAS  Google Scholar 

  58. Ozaki S, York-Jolley J, Kawamura H, Berzofksy JA: Cloned protein antigen-specific, la-restricted T cells with both helper and cytolytic activities: Mechanisms of activation and killing. Cell Immunol 1987;105:301.

    Article  PubMed  CAS  Google Scholar 

  59. Yoshimura A, Shiku H, Nakayama E: Rejection of an IA+ variant line of FBL-3 leukemia by cytotoxic T lymphocytes with CD4+ and CD4CD8 T cell receptor-alpha beta phenotypes generated in CD8-depleted C57BL/6 mice. J Immunol 1993;150:4900.

    PubMed  CAS  Google Scholar 

  60. Echchakir H, Bagot M, Dorothese G, et al.: Cutaneous T cell Lymphoma Reactive CD4+ Cytotoxic T Lymphocyte Clones Display a Th1 Cytokine Profile and Use of Fas-Independent Pathway for Specific Tumor Cell Lysis. J Invest Dermatol 2000;115:74.

    Article  PubMed  CAS  Google Scholar 

  61. Greenberg PD: Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol 1991;49:281.

    Article  PubMed  CAS  Google Scholar 

  62. Pandoll DM, Topalian SL: The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 1998;10:588.

    Article  Google Scholar 

  63. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H: Role of bone marrow-derived cells in presenting MHC class 1-restricted tumor antigens. Science 1994;264:961.

    Article  PubMed  CAS  Google Scholar 

  64. Mumberg D, Monach PA, Wanderling S, et al.: CD4+ T cells eliminate MHC class 11-negative cancer cells in vivo by indirect effects of IFN-γ. Proc Natl Acad Sci USA 1999;96:8633.

    Article  PubMed  CAS  Google Scholar 

  65. Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR: Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 1997; 186:65.

    Article  PubMed  CAS  Google Scholar 

  66. Greenberg PD, Kern DE, Cheever MA: Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2 T cells. Tumor eradication does not require participation of cytotoxic T cells. J. Exp. Med. 1985;161: 1122.

    Article  PubMed  CAS  Google Scholar 

  67. Xie K, Huang S, Dong Z, et al.: Transfection with inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 1995; 181:1333.

    Article  PubMed  CAS  Google Scholar 

  68. Folkman J: Antiangiogenic gene therapy. Proc Natl Acad Sci USA 1998;95:9064.

    Article  PubMed  CAS  Google Scholar 

  69. Streiter RM, Polverini PJ, Arenberg DA, Kunkel SK: The role of CXC chemokines as regulators of angiogenesis. Shock 1995;4:155.

    Article  Google Scholar 

  70. Arenberg DA, Kunkel SL, Polverini PJ, et al.: Interferon-α inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 1996;184:981.

    Article  PubMed  CAS  Google Scholar 

  71. Sgadari C, Farber JM, Angiolillo AL, et al.: Mig, the monokine induced by interferon-γ, promotes tumor necrosis in vivo. Blood 1997; 89:2635.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Paterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beatty, G.L., Paterson, Y. Regulation of tumor growth by IFN-γ in cancer immunotherapy. Immunol Res 24, 201–210 (2001). https://doi.org/10.1385/IR:24:2:201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:24:2:201

Key Words