Skip to main content

Advertisement

Log in

Lupus autoantigens: Their origins, forms, and presentation

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The immune system has developed a number of mechanisms by which to distin guish self from foreign proteins. These mechanisms are found throughout the ontogeny of B and T cell development and include the deletion of autoreactive cells in central lymphoid organs and the induction of self-tolerance in the periphery. However, any failure of these mechanisms for self-tolerance may result in autoimmune disease. Efforts in our laboratory have been directed at under-standing how autoimmunity is initiated and maintained in both the B and T cell compartment, with particular interest in the autoimmunity of systemic lupus erythematosus (SLE). This review will focuson our studies on the forms of self-antigens that may be involved in the original “antigenic sin” of SLE and in the role of B lymphocytes as autoantigen presenting cells. We will also discuss whether costimulation is a formal requirement for the induction and maintenance of autoimmunity. Finally, we have provided a model for how all of these individual elements may contribute to the autoimmune processes leading to pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H: Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 1991;65:319–331.

    Article  PubMed  CAS  Google Scholar 

  2. Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H: Atlation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991;65: 305–317.

    Article  PubMed  CAS  Google Scholar 

  3. Jenkins MK, Schwartz RH: Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987;165:302–319.

    Article  PubMed  CAS  Google Scholar 

  4. Rocha B, Tanchot C, Von-Boehmer H: Clonal anergy blocks in vivo growth of mature T cells and can be reversed in the absence of antigen. J Exp Med 1993;177: 1517–1521.

    Article  PubMed  CAS  Google Scholar 

  5. Robey EA, Ramsdell F, Gordon JW, Mamalaki C, Kioussis D, Youn HJ, Gottlieb PD, Axel R, Fowlkes BJ: A self-reactive T cell population that is not subject to negative selection. Int Immunol 1992;4: 969–974.

    Article  PubMed  CAS  Google Scholar 

  6. Schonrich G, Kalinke U, Momburg F, Malissen M, Schmitt-Verhulst AM, Malissen B, Hammerling GJ, Arnold B: Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 1991;65:293–304.

    Article  PubMed  CAS  Google Scholar 

  7. Shevach EM: Regulatory T cells in autoimmunity. Annu Rev Immunol 2000;18:423–449.

    Article  PubMed  CAS  Google Scholar 

  8. Casciola-Rosen LA, Miller DK, Anhalt GJ, Rosen A: Specific cleavage of the 70-kDa protein component of the UI small nuclear ribonucleo protein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem 1994;269:30757–30760.

    PubMed  CAS  Google Scholar 

  9. Casciola-Rosen LA, Anhalt GJ, Rosen A: DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 1995; 182:1625–1634.

    Article  PubMed  CAS  Google Scholar 

  10. Andrade F, Roy S, Nicholson DW, Thornberry NA, Rosen A, Casciola-Rosen L: Granzyme B directly and efficiently cleaves several dow nstream substrates: implications for CTL-induced apoptosis. Immunity 1998;8: 451–460.

    Article  PubMed  CAS  Google Scholar 

  11. Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A: Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 1999; 190:815–825.

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein I, Halpern B, Robert L: Immunological relationship between streptococcus A polysaccharide and the structural glycoproteins of heart valve. Nature 1967;213:44–47.

    Article  CAS  Google Scholar 

  13. Van de Rijn IV, Zabriskie JB, McCarthy M: Group A streptococcal antigenscross-reactive with myocardium: purification of heart-reactive anti body and isolation and characterization of the streptococcal antigen. J Exp Med 1977;146: 579–599.

    Article  PubMed  Google Scholar 

  14. Cummingham MW, Antone SM, Smart M, Liu R, Kosanke S: Molecular analysis of human cardiac myosin-cross-reactive B-and T-cell epitopes of the group A streptococcal M5 protein. Infect Immun 1997;65:3913–3923.

    Google Scholar 

  15. Dale JB, Beachy EH: Sequence of myosin-cross-reactive epitopes of streptococcal M protein. J Exp Med 1986;164:1785–1790.

    Article  PubMed  CAS  Google Scholar 

  16. Williams RC: Rleumatic feverand the Streptococcus. Another look at molecular mimicry. Am J Med 1983;75:727–730.

    Article  PubMed  Google Scholar 

  17. Krisher K, Cunningham MW: Myosin: a link between Streptococci and heart. Science 1985;227: 413–415.

    Article  PubMed  CAS  Google Scholar 

  18. Hemmer B, Fleckenstein BT, Vergelli M, Jung G, McFarland H, Martin R, Wiesmuller K: Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 1997;185: 1651–1659.

    Article  PubMed  CAS  Google Scholar 

  19. Wucherpfennig KW, Stominger JL: Molecular mimicry in T cell-mediated aut oimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80:695–705.

    Article  PubMed  CAS  Google Scholar 

  20. James JA, Daufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB: An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupusery thematosus. J Clin Invest 1997;100:3019–3026.

    PubMed  CAS  Google Scholar 

  21. James JA, Scofield RH, Harley JB: Lupus humoralauto immunity after short peptide immunization. Ann NY Acad Sci 1997;815:124–127.

    Article  PubMed  CAS  Google Scholar 

  22. James JA, Harley JB: A model of petide-induced lupus auto immune B cell epitope spreading is strain specific and is not H-2 restricted in mice. J Immunol 1998;160: 502–508.

    PubMed  CAS  Google Scholar 

  23. Lipham WJ, Redmond TM, Takahashi H, Berzofsky JA, Wiggert B, Chader GJ, Gery I: Recognition of peptides that are immunopa thogenic but cryptic. Mechanisms that allow lymphocytes sensitized against cryptic peptides to initiate pathogenicau to immune processes. J Immunol 1991;146:3757–3762.

    PubMed  CAS  Google Scholar 

  24. Zamvill SS, Mitchel DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB: T cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature (Lond) 1986;324:258–260.

    Article  Google Scholar 

  25. Kaufman DL, Clare-Salzier M, Tian J, Forsthuber T, Ting GS, Robinson P, Atkinson MA, Sercarz EE, Tobin AJ, Lehmann PV: Spontaneous loss of T cell to lerance to glutamine acid decarboxylase in murine insulin-dependent diabetes. Nature 1993;366:69–72.

    Article  PubMed  CAS  Google Scholar 

  26. Fatenejad S, Brooks W, Schwartz A, Craft J: Pattern of anti-small nuclear ribo nucleoprotein antibodies in MRL/MP-ipr mice suggests that the intact U1 snRNP particle is their auto immunogenic target. J Immunol 1994;152: 5523–5531.

    PubMed  CAS  Google Scholar 

  27. Bockerstedt LK, Gee R, Mamula MJ: Self peptides in the initiation of lupus auto immunity. J Immunol 1995;154:3516–3524.

    Google Scholar 

  28. Mamula MJ: The inability to processaself peptide allows T cells to escape tolerance. J Exp Med 1993;177:567–571.

    Article  PubMed  CAS  Google Scholar 

  29. Corthay A, Backlund J, Broddefalk J, Michaelsson E, Goldschmidt TJ, Kihlberg J, Holmadahl R: Epitope glycosylation plays a critical role for T cell recognition of type 11 collagen in collagen-induced arthritis. Eur J Immunol 1998;28:2580–2590.

    Article  PubMed  CAS  Google Scholar 

  30. Utz PJ, Hottelet M, Schur PH, Anderson P: Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J Exp Med 1997; 185:843–854.

    Article  PubMed  CAS  Google Scholar 

  31. Girbal-Neauhauser E, Durieux J, Amaud M, Dalbon P, Sebbag M, Vincent C, Simon M, Senshu T, Masson-Bessiere C, Jolivet-Reynaud C, Jolivet M, Serre G: The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 1999;162:585–594.

    Google Scholar 

  32. Arentz-Hansen, H, Komer R, Molberg O, Quarsten H, Vader W, Kooy YMC, Lundin KEA, Koning F, Roepstorff P, Sollid LM, McAdam SN: The intestinal T cell response to α-gliadin in adult celiac disease is focused on a single deamida ted gluta mine targe ted by tissue trans-glutaminase. J Exp Med 2000; 191:603–612.

    Article  PubMed  CAS  Google Scholar 

  33. Bloom DD, Davignon JL, Cohen PL, Eisenberg RA, Clarke SH: Overlap of the anti-Sm and anti-DNA responses of MRL/MP-lpr/lpr mice. J Immunol 1993;150: 1579–1590.

    PubMed  CAS  Google Scholar 

  34. Najbauer J, Orpiszewski J, Aswad DW: Molecular aging of tubulin: accumulation of isoasparty 1 sites in vivo. Biochemistry 1996;35: 5183–5190.

    Article  PubMed  CAS  Google Scholar 

  35. Galletti P, Ingrosso D, Manna C, Clemente G, Zappia V: Protein damage and methylation-mediate repairin the ery throcyte. Biochem J 1995;306:313–325.

    PubMed  CAS  Google Scholar 

  36. Aswad DW: Parification and properties of prote in L-isoasparty 1 methyl transferase deamidation and isoaspartate fromation in peptides and proteins; in Aswad, DW (ed): Deamidati on and isoaspartate formation in peptides and proteins. Boca Raton, FL, CRC Press, 1995, pp 31–46.

    Google Scholar 

  37. Mamula MJ, Gee RJ, Elliot JI, Sette A, Southwood S, Jones P, Blier PR: Isoas partyl post-translational modification triggers autoimmune responses to selfproteins. J Biol Chem 1999;274: 22321–22327.

    Article  PubMed  CAS  Google Scholar 

  38. Kim E, Lowerson JD, MacLauren DC, Clarke S, Young SG: Deficiency of a protein-repairenzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci USA 1997; 94:6132–6137.

    Article  PubMed  CAS  Google Scholar 

  39. Tsai W, Clarke S: Amino acid poly morphisms of the human L-isoaspartyl/D-aspartyl methyl-transferase involved in protein repair. Biochem Biophys Res Commun 1994;203:491–497.

    Article  PubMed  CAS  Google Scholar 

  40. Mamula MJ, Fatenejad S, Craft J: B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol 1994;152:1453–1461.

    PubMed  CAS  Google Scholar 

  41. Roth R, Nakamura T, Mamula MJ: B7 costimulation and autoantigen specificity enable B cells to acitvate autoreactive T cells. J Immunol 1996;157:2924–2931.

    PubMed  CAS  Google Scholar 

  42. Roth R, Mamula MJ: B lymphocytes as autoantigen presenting cells in the amplification of autoimmunity. Ann NY Acad Sci 1997;815:88–104.

    Article  PubMed  CAS  Google Scholar 

  43. Santulli-Marotto S, Retter MW, Gee R, Mamula MJ, Clarke SH: Autoreactive B cell regulation: Peripheral induction of developmental arrest by lupus-associated autoantigens. Immunity, 1998; 8:209–219.

    Article  PubMed  CAS  Google Scholar 

  44. Fuchs EJ and Matzinger P: B cells turn off virgin but not memory T cells. Science 1992;258: 1156–1159.

    Article  PubMed  CAS  Google Scholar 

  45. Gilbert KM, Weigle WO: Tolerogenicity of resting and activated B cells. J Exp Med 1994;179: 249–258.

    Article  PubMed  CAS  Google Scholar 

  46. Eynon EE, Parker DC: Parameters of tolerance induction by antigen targeted to B lymphocytes. J Immunol 1993;151:2958–2964.

    PubMed  CAS  Google Scholar 

  47. Morris SC, Lees A, Finkelman FD: In vivo activation of naive T cells by antigen-presenting B cells. J Immunol 1994;152:3777–3785.

    PubMed  CAS  Google Scholar 

  48. Constant S, Schweitzer N, West J, Ranney P, Bottomly K: B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol 1995;155: 3734–3741.

    PubMed  CAS  Google Scholar 

  49. Constant SL: B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol 1999;162:5695–5703

    PubMed  CAS  Google Scholar 

  50. Wolf SD, Dittel BN, Hardardottir F, Janeway Jr., CA: Experimental autoimmune encephaloyelitis induction in genetically B cell-deficient mice. J Exp Med 1996; 184:2271–2278.

    Article  PubMed  CAS  Google Scholar 

  51. Seneze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, Flemming SA, Leiter EH, Shultz LD: B lymphocytes are essential for the initiation of T cell mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD. Ig munull mice. J Exp Med 1996;184:2049–2053.

    Article  Google Scholar 

  52. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D: The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 1994;180: 1295–1306.

    Article  PubMed  CAS  Google Scholar 

  53. Chan OTM, Madaio MP, Shlomchik MJ: The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev 1999;169: 107–121.

    Article  PubMed  CAS  Google Scholar 

  54. Chan OTM, Hannum LG, Haberman AH, Madaio MP, Schlomchik MJ: A novel mouse with B cells but lacking serum antibody reveals an antibody-inde pendent role for B cells in murine lupus. J Exp Med 1999;189:1639–1647.

    Article  PubMed  CAS  Google Scholar 

  55. Pierce SK, Morris JF, Grusby MJ, Kaumaya P, Buskirk AV, Srinivasan M, Crump B, Smolenskit A: Antigen-presenting function of B lymphocytes. Immunol Rev 1988;106:149–180.

    Article  PubMed  CAS  Google Scholar 

  56. Lanzavecchia, A: Receptor mediated antigen uptake and its effect on antigen presentation to class II restricted T lymphocytes. Ann Rev Immunol 1990;8:773–793.

    CAS  Google Scholar 

  57. Weiser P, Muller R, Braun U, Reth M: Endosomal targeting by the cytoplasmic tail of the membrane immunoglobulin. Science 1997; 276:407–409.

    Article  PubMed  CAS  Google Scholar 

  58. Tarlinton D: Antigen presentation by memory B cells: the sting is in the tail. Science 1997;276: 374–375.

    Article  PubMed  CAS  Google Scholar 

  59. Noelle R, Ledbetter JA, Aruffo A: CD40 and its ligand, an essential ligand-receptor pair for thymus dependent B cell activation. Immunol Today 1992;13:431–433.

    Article  PubMed  CAS  Google Scholar 

  60. Lenschow DJ, Sperling AI, Cooke MP, Freeman G, Rhee L, Decker DC, Gray G, Nadler LM, Goodnow CC, Bluestone JA: Differential up regulation of the B7-1 and B7-2 costimulatory molecules after lg receptor engagement by antigen. J Immunol 1994;153: 1990–1997.

    PubMed  CAS  Google Scholar 

  61. Ho WY, Cooke MP, Goodnow CC, Davis MM: Resting and anergic B cells are defective in CD28 dependent co-stimulation of naive CD4+T cells. J Exp Med 1994;179: 1539–1549.

    Article  PubMed  CAS  Google Scholar 

  62. Mamula MJ, Lin RH, Janeway Jr., CA, Hardin JA: Breaking T cell tolerance with foreign and self co-immunogens: A study of autoimmune B cand T cell epitopes of cytochromec. J Immunol 1992; 149:789–795.

    PubMed  CAS  Google Scholar 

  63. Lin RH, Mamula MJ, Hardin JA, Janeway Jr. CA: Induction of autoreactive B cells allows priming of autoreactive T cells. J Exp Med 1991;173:1433–1439.

    Article  PubMed  CAS  Google Scholar 

  64. Davidson HW, Watts C: Epitope directed processing of specific antigen by B lymphocytes. J Cell Biol 1989;109:85–90.

    Article  PubMed  CAS  Google Scholar 

  65. Ozaki S, Berzofsky JA: Antibody conjugatesmimic specific B cell presentation of antigen: Relationship between T and B cell specificity. J Immunol 1987;138:4133–4142.

    PubMed  CAS  Google Scholar 

  66. Watts C, Lanzavecchia A: Suppressive effect of antibody on processing of T cell epitopes. J Exp Med 1993;178:1459–1463.

    Article  PubMed  CAS  Google Scholar 

  67. McAdam AJ, Schweitzer AN, Sharpe AH: The role of B7 costimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol Rev 1998;165:231–247.

    Article  PubMed  CAS  Google Scholar 

  68. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH: B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995;80:707–718.

    Article  PubMed  CAS  Google Scholar 

  69. Racke MK, Scott DE, Quigley L, Gray GS, Abe R, June CH, Perrin PJ: Distinct roles for B7-1 (CD80) and B7-2 (CD 86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest 1995; 1995:2195–2203.

    Article  Google Scholar 

  70. Nakajima A, Azuma M, Kodera S, Nuriya S, Terashi A, Abe M, Hirose S, Shirai T, Yagita H, Okumura K: Preferential dependence of auto-antibody production in murine lupuson CD 86 costimulatory molecule. Eur J Immunol 1995;25: 3060–3069.

    Article  PubMed  CAS  Google Scholar 

  71. Finck B, Linsley P and Wofsy D: Treatment of murine lupus with CTLA41g. Science 1994;265: 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  72. Liang B, Gee, RJ, Kashgarian MJ, Sharpe AH, Mamula MJ: B7 costimulation in the development of lupus: Autoimmunity arises in the absence of either B7. 1/B7.2 or in the presence of anti-B7.1/B7.2 blocking antibodies. J Immunol 1999;163:2322–2329.

    PubMed  CAS  Google Scholar 

  73. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA: T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990;346:183–187.

    Article  PubMed  CAS  Google Scholar 

  74. Shinde S, Gee R, Santulli-Marotto S, Bockenstedt LK, Clarke SH, Mamula MJ: T cell autoimmunity in Ig transgenic mice. J Immunol 1999;162:7519–7524.

    PubMed  CAS  Google Scholar 

  75. Anderson AC, Nicholson LB, Legge KL, Turchin V, Zaghouani H, Kuchroo VJ: High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J Exp Med 2000;191:761–770.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, H.A., Yan, J., Liang, B. et al. Lupus autoantigens: Their origins, forms, and presentation. Immunol Res 24, 131–147 (2001). https://doi.org/10.1385/IR:24:2:131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:24:2:131

Key Words

Navigation