Skip to main content

Advertisement

Log in

CD19 regulates intrinsic B lymphocyte signal transduction and activation through a novel mechanism of processive amplification

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The fate of B lymphocytes is dependent on intrinsic and B cell antigen receptor (BCR)-induced signals. These signals are interpreted and modified by response regulators such as CD19 that govern mature B cell activation. The current understanding of how CD19 governs B lymphocyte signaling is outlined in this review. Primarily, CD 19 establishes a novel Src-family kinase amplification loop that regulates basal signal transduction thresholds in resting B cells. Moreover, CD19 amplifies Src-family kinase activation following BCR ligation. CD19 amplification of Lyn activity leads to processive phosphorylation of CD19 and downstream substrates including CD22. Phosphorylated CD19 recruits other effector molecules including Vav, Grb2, phosphoinositide 3-kinase, phospholipase C γ2, and c-Abl, which may contribute to CD19 regulation of B cell function. CD19/Lyn complex formation also regulates phosphorylation of CD22 and FcγRIIB, which inhibit B cell signal transduction through the recruitment of the SHP1 and SHIP phosphatases. These observations provide insight into how CD19 governs the molecular ordering and intensity of signals transduced in B cells, and how perturbations in CD19 expression or signaling function may contribute to autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tedder TF: Response-regulators of B lymphocytesignaling thresholds provide a context for antigen receptor signal transduction. Semin Immunol 1998;10:259–265.

    Article  PubMed  CAS  Google Scholar 

  2. Sato S, Steeber DA, Jansen PJ, Tedder TF: CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol 1997;158:4662–4669.

    PubMed  CAS  Google Scholar 

  3. Sato S, Ono N, Steeber DA, Pisetsky DS Tedder TF: CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol 1996;157:4371–4378.

    PubMed  CAS  Google Scholar 

  4. Krop I, Shaffer AL, Fearon DT Schlissel MS: The signaling activity of murine CD19 is regulated during B cell development. J Immunol 1996;157:48–56.

    PubMed  CAS  Google Scholar 

  5. Boyd AW, Anderson KC, Freedman AS, Fisher DC, Slaughenhoupt B, Schlossman SF, Nadler LM: Studies of in vitro activation and differentiation of humans B lymphocytes. I. Phenotypic and functional characterization of the B cell population responding to anti-Ig antibody. J Immunol 1985;134:1516–1523.

    PubMed  CAS  Google Scholar 

  6. Tedder TF, Zhou L-J, Engel P: The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 1994;15:437–442.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou L-J, Ord DC, Hughes AL, Tedder TF: Structure and domain organization of the CD19 antigen of human, mouse and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol 1991;147:1424–1432.

    PubMed  CAS  Google Scholar 

  8. Fujimoto M, Pce JC, Inaoki M, Tedder TF: CD19 regulates B lymphocyte responses to transmembrane signals. Semin Immunol 1998;10:267–277.

    Article  PubMed  CAS  Google Scholar 

  9. van Noesel CJ, Lankester AC, van Schijndel GM, van Lier RA: The CR2/CD19 complex on human B cells contains the src-family kinase Lyn. Int Immunol 1993;5:699–705.

    Article  PubMed  Google Scholar 

  10. Uckun FM, Burkhardt AL, Jarvis L, et al.: Signal transduction through the CD19 receptor during discrete developmental stages of human B-cell ontogeny. J Biol Chem 1993;268:21,172–21,184.

    CAS  Google Scholar 

  11. Chalupny NJ, Kanner SB, Schieven GL, Wee S, et al.: Tyrosine phosphorylation of CD19 in pre-B and mature B cells. EMBO J 1993;12:2691–2696.

    PubMed  CAS  Google Scholar 

  12. Fujimoto M, Fujimoto Y, Poe JC, et al.: CD 19 regulates Src-family protein tyrosine kinase activation in B lymphocytes through process sive amplification. Immunity 2000;13:47–57.

    Article  PubMed  CAS  Google Scholar 

  13. Zipfel PA, Grove M, Blackburn K, Fujimoto M, Tedder TF, Pendergast AM: Thec-Abltyrosine kinase is regulated downstream of the B cell antigen receptor and interacts with CD19. J Immunol 2000;165: 6872–6879.

    PubMed  CAS  Google Scholar 

  14. Carroll MC: The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 1998; 16:545–568.

    Article  PubMed  CAS  Google Scholar 

  15. Sato S, Miller AS, Howard MC, Tedder TF: Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. J Immunol 1997;159:3278–3287.

    PubMed  CAS  Google Scholar 

  16. Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF: The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 1992;149: 2841–2850.

    PubMed  CAS  Google Scholar 

  17. Levy S, Todd SC, Maecker HT: CD81 (TAPA-1): a molecule involved in signal transduction and cells adhesion in the immune system. Annu Rev Immunol 1998; 16:89–110.

    Article  PubMed  CAS  Google Scholar 

  18. Maecker HT, Levy S: Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med 1997;185:1505–1510.

    Article  PubMed  CAS  Google Scholar 

  19. Miyazaki T, Muller U, Campbell KS: Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 1997;16: 4217–4225.

    Article  PubMed  CAS  Google Scholar 

  20. Tsitsikov EN, Gutierrez-Ramos J-C, Geha RS: Impaired CD19 expression and signaling, enhanced antibody response to type II T-independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA 1997;94: 10,844–10,849.

    CAS  Google Scholar 

  21. Deblandre GA, Marinx OP, Evans SS, et al.: Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J Biol Chem 1995;270:23,860–23,866.

    CAS  Google Scholar 

  22. Bradbury LE, Goldmacher VS, Tedder TF: The CD19 signal transduction complex of B lymphocytes: deletion of the CD19 cytoplasmic domain alters signal transduction but not complex formation with TAPA-1 and Leu-13. J Immunol 1993;151:2915–2927.

    PubMed  CAS  Google Scholar 

  23. Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT: Functional dissection of the CD21/CD19/TAPA-1 Leu-13 complex of B lymphocytes. J Exp Med 1993;178:1407–1417.

    Article  PubMed  CAS  Google Scholar 

  24. Tedder TF, Inaoki M, Sato S: The CD19/21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 1997;6:107–118.

    Article  PubMed  CAS  Google Scholar 

  25. Carter RH, Doody GM, Bolen JB, Fearon DT: Membrane IgM-induced tyrosine phosphorylation of CD19 requires a CD19 domain that mediates association with components of the B cell antigen receptor complex. J Immunol 1997;158:3062–3069.

    PubMed  CAS  Google Scholar 

  26. Engel P, Zhou L-J, Ord DC, Sato S, Koller B, Tedder TF: Abnormal B lymphocyte development, activation and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 1995;3:39–50.

    Article  PubMed  CAS  Google Scholar 

  27. Rickert RC, Rajewsky K, Roes J: Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 1995;376:352–355.

    Article  PubMed  CAS  Google Scholar 

  28. Sato S, Steeher DA, Tedder TF: The CD19 signal transduction molecule is a response regulator of B-lymphocyte differentiation. Proc Natl Acad Sci USA 1995;92: 11,558–11,562.

    Article  CAS  Google Scholar 

  29. Fujimoto M, Poe JC, Jansen PJ, Sato S, Tedder TF: CD19 amplifies B lymphocyte signal transduction by regulating Src-family protein tyrosine kinase activation. J Immunol 1999;162:7088–7094.

    PubMed  CAS  Google Scholar 

  30. Zhou L-J, Smith HM, Waldschmidt TJ, Schwarting R, Daley J, Tedder TF: Tissue-specific expression of the human CD19 gene in transgenic mice inhibits antigen-independent B lymphocyte development. Mol Cell Biol 1994;14: 3884–3894.

    PubMed  CAS  Google Scholar 

  31. Inaoki M, Sato S, Weintraub BC, Goodnow CC, Tedder TF: CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. J Exp Med 1997;186: 1923–1931.

    Article  PubMed  CAS  Google Scholar 

  32. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K: Quantitative genetic variation in CD19 expression correlates with autoimmunity in mice and humans. J Immunol 2000;165:6635–6643.

    PubMed  CAS  Google Scholar 

  33. Tedder TF, Sato S, Poe JC, Fujimoto M: CD19 and CD22 regulate a B lymphocyte signal transduction pathway that contributes to autoimmunity. Keio J Med 2000; 49:1–13.

    PubMed  CAS  Google Scholar 

  34. Khan WN, Alt FW, Gerstein RM, et al.: Defective B cell development and function in Btk-deficient mice. Immunity 1995;3:283–299.

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki H, Terauchi Y, Fujiwara M, et al.: Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 1999;283: 390–392.

    Article  PubMed  CAS  Google Scholar 

  36. Fruman DA, Snapper SB, Yballe CM, et al.: Impaired B cell developmental proliferation in absence of phosphoinositide 3-kinase p85α. Science 1999;283:393–397.

    Article  PubMed  CAS  Google Scholar 

  37. Pappu R, Cheng AM, Li B, et al.: Requirement for B cell linker protein (BLNK) in B cell development. Science 1999;286: 1949–1954.

    Article  PubMed  CAS  Google Scholar 

  38. Jumaa H, Wollscheid B, Mitterer M, Wierands I, Reth M, Nielsen PJ: Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 1999; 11:547–554.

    Article  PubMed  CAS  Google Scholar 

  39. Wang D, Feng J, Wen R, et al.: Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 2000;13: 25–35.

    Article  PubMed  Google Scholar 

  40. Bachmann MF, Nitschke L, Krawczyk C, et al.: The guanine-nucleotide exchange factor Vav is a crucial regulator of B cell receptor activation and B cell responses to non-repetitive antigens. J Immunol 1999;163:137–142.

    PubMed  CAS  Google Scholar 

  41. Tarakhovsky A, Turner M, Shaal S, et al.: Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 1995;374:467–470.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang R, Alt FW, Davidson L, Orkin SH, Swat W: Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 1995;374:470–473.

    Article  PubMed  CAS  Google Scholar 

  43. Pezzutto A, Dorken B, Rabinovitch PS, Ledbetter JA, Moldenhauer G, Clark EA: CD19 monoclonal antibody HD37 inhibits anti-immunoglobulin-induced B cell activation and proliferation. J Immunol 1987;138:2793–2799.

    PubMed  CAS  Google Scholar 

  44. Barrett TB, Shu GL, Draves KE, Pezzutto A, Clark EA: Signaling through CD19, Fc receptors or transforming growth factor-β: each inhibits the activation of resting human B cells differently. Eur J Immunol 1990;20:1053–1059.

    Article  PubMed  CAS  Google Scholar 

  45. Callard RE, Rigley KP, Smith SH, Thurstan S, Shields JG: CD19 regulation of human B cell responses. B cell proliferation and antibody secretionare inhibited or enhanced by ligation of the CD19 surface glycoprotein depending on the stimulating signal used. J Immunol 1992;148:2983–2987.

    PubMed  CAS  Google Scholar 

  46. Fearon DT, Carter RH: The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol 1995;13:127–149.

    Article  PubMed  CAS  Google Scholar 

  47. Carter RH, Fearon DT: CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 1992;256:105–107.

    Article  PubMed  CAS  Google Scholar 

  48. van Noesel CJM, Lankester AC, van Lier RAW: Dual antigen recognition by B cells. Immunol. Today 1993;14:8–11.

    Article  PubMed  Google Scholar 

  49. Ahearn JM, Fischer MB, Croix D, et al.: Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 1996;4:251–262.

    Article  PubMed  CAS  Google Scholar 

  50. Molina H, Holers VM, Li B, et al.: Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci USA 1996;93: 3357–3361.

    Article  PubMed  CAS  Google Scholar 

  51. Kitanaka A, Ito C, Coustan-Smith E, Campana D: CD38 ligation in human B cell progenitors triggers tyrosine phosphorylation of CD19 and association of CD19 with Lyn and phosphatidy linositol 3-kinase. J Immunol 1997;159: 184–192.

    PubMed  CAS  Google Scholar 

  52. Lankester AC, Rood PML, van Schijndel GMW, Hooibrink B, Varhoeven AJ, van Lier RAW: Alteration of B-cell antigen receptor signaling by CD19 co-ligation. A study with bispecific antibodies. J Biol Chem 1996;271: 22,326–22,330.

    CAS  Google Scholar 

  53. Lankester AC, van Schijndel GMW, Rood PML, Verhoeven AJ, van Lier RAW: B cell antigen receptor cross-linking induced tyrosine phosphorylation and membrane translocation of a multimeric Shc complex that is augmented by CD19 co-ligation. Eur J Immunol 1994;24:2818–2825.

    Article  PubMed  CAS  Google Scholar 

  54. Tooze RM, Doody GM, Fearon DT: Counterregulation by the coreceptors CD19 and CD22 of MAP kinase activation by membrane immunoglobulin. Immunity 1997; 7:59–67.

    Article  PubMed  CAS  Google Scholar 

  55. Kozono Y, Duke RC, Schleicher MS, Holers VM: Co-ligation of mouse complement receptors 1 and 2 with surface 1gM rescues splenic B cells and WEHI-231 cells from anti-surface 1gM-induced apoptosis. Eur J Immunol 1995;25: 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  56. Rigley KP, Callard RE: Inhibition of B cell proliferation with CD19 monoclonal antibodies: CD19 antibodies do not interfere with early signalling events triggered by anti-IgM or IL-4. Eur J Immunol 1991;21:535–540.

    Article  PubMed  CAS  Google Scholar 

  57. Buhl AM, Pleiman CM, Rickert RC, Cambier JC: Qualitative regulation of B cell antigen rector signaling by CD19: Selective requirement for P13-kinase activation, inositol-1,4,5-trisphosphate production and Ca2+ mobilization. J Exp Med 1997;186:1897–1910.

    Article  PubMed  CAS  Google Scholar 

  58. Reth M, Wienands J: Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 1997;15:453–479.

    Article  PubMed  CAS  Google Scholar 

  59. Li H-L, Forman MS, Kurosaki T, Pure E: Syk is required for BCR-mediated activation of p90Rsk, but not p70Syk, via a mitogen-activated protein kinase-independent pathway in B cells. J Biol Chem 1997;272:18,200–18,208.

    CAS  Google Scholar 

  60. El-Hillal O, Kurosaki T, Yamamura H, Kinet J-P, Scharenberg AM: Syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction. Proc Natl Acad Sci USA 1997;94: 1919–1924.

    Article  PubMed  CAS  Google Scholar 

  61. Beitz LO, Fruman DA, Kurosaki T, Cantley LC, Scharenburg AM: SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J Biol Chem 1999; 274:32,662–32,666.

    Article  CAS  Google Scholar 

  62. Buhl AM, Cambier JC: Phosphorylation of CD19 Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton's tyrosine kinase. J Immunol 1999; 162:4438–4446.

    PubMed  CAS  Google Scholar 

  63. Tuveson DA, Carter RH, Soltoff SP, Fearon DT: CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 1993;260:986–989.

    Article  PubMed  CAS  Google Scholar 

  64. Weng WK, Jarvis L, LeBien TW: Signaling through CD19 activates vav/mitogen-activated protein kinase pathway and induces formation of a CD19/vav/phosphatidy linositol 3-kinase complex in human B cell precursors. J Biol Chem 1994;269:32,514–32,521.

    CAS  Google Scholar 

  65. Li X, Sandoval D, Freeberg L, Carter RH: Role of CD19 tyrosine 391 in synergistic activation of B lymphocytes by coligation of CD19 and membrane 1g. J Immunol 1997;158:5649–5657.

    PubMed  CAS  Google Scholar 

  66. O'Rourle LM, Tooze R, Turner M, et al.: CD19 as a membrane-anchored adaptor protein of B lymphocytes: Costimulation of lipid and protein kinases by recruitment of Vav. Immunity 1998;8:635–645.

    Article  Google Scholar 

  67. Sato S, Jansen PJ, Tedder TF: CD19 and CD22 reciprocally regulate Vav tyrosine phosphorylation during B lymphocyte signaling. Proc Natl Acad Sci USA 1997;94: 13,158–13,162.

    CAS  Google Scholar 

  68. Songyang Z, Cantley LC: Recognition and specificity in protein tyrosine kinase-mediated signaling. Trend Biochem Sci 1995;20: 470–475.

    Article  PubMed  CAS  Google Scholar 

  69. Clark MR, Johnson SA, Cambier JC. Analysis of 1g-alpha-tyrosine kinase interaction reveals two levels of binding specificity and tyrosine phosphorylated 1g-alpha stimulation of Fyn. EMBO J 1994; 13:1911–1919.

    PubMed  CAS  Google Scholar 

  70. Ruzzene M, Brunati AM, Donella-Deana A, Martin O, Pinra LA: Specific stimulation of c-Fgr kinase by tyrosine-phosphorylated (poly) peptides: possible implication in the sequential mode of protein phosphorylation. Eur J Biochem 1997;245:701–707.

    Article  PubMed  Google Scholar 

  71. Alexandropoulos K, Baltimore D: Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel pl 30Cas-related protein, Sin Genes Dev 1996;10:1341–1355.

    Article  CAS  Google Scholar 

  72. Tedder TF, Tuscano J, Sato S, Kehrl JH: CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Ann Rev Immunol 1997;15: 481–504.

    Article  CAS  Google Scholar 

  73. DeFranco AL, Chan VWF, Lowell CA: Positive and negative roles of the tyrosine kinase Lyn in B cell function. Semin Immunol 1998; 10:299–308.

    Article  PubMed  CAS  Google Scholar 

  74. Poe JC, Fujimoto M, Jansen PJ, Miller AS, Tedder TF: CD22 forms a quaternary complex with SHIP, Grb2 and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J Biol Chem 2000;275: 17,420–17,427.

    Article  CAS  Google Scholar 

  75. Nishizumi H, Taniuchi I, Yamanashi Y, et al.: Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 1995;3:549–560.

    Article  PubMed  CAS  Google Scholar 

  76. Weng W-K, Shah N, O'Brien D, Van Ness B, Le Bien TW: Differential induction of DNA-binding activities following CD19 cross-linking in human B lineage cells. J Immunol 1997;159:5502–5508.

    PubMed  CAS  Google Scholar 

  77. Li X, Carter RH: Convergence of CD19 and B cell antigen receptor signals at MEK1 in the ERK2 activation cascade. J Immunol 1998; 161:5901–5908.

    PubMed  CAS  Google Scholar 

  78. Beckwith M, Jorgensen G, Longo DL: The protein product of the proto-oncogene c-cbl forms a complex with phosphatidylinositol 3-kinase p85 and CD19 in anti-IgM-stimulated human B-lymphoma cells. Blood 1996; 88:3502–3507.

    PubMed  CAS  Google Scholar 

  79. Chalupny NJ, Aruffo A, Esselstyn JM, et al.: Specific binding of Fyn and phosphatidy linositol 3-kinase to the B cell surface glycoprotein CD19 through their src homology 2 domains. Eur J Immunol 1995; 25:2978–2984.

    Article  PubMed  CAS  Google Scholar 

  80. Marte BM, Downward J: PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997; 22:355–358.

    Article  PubMed  CAS  Google Scholar 

  81. Franke TF, Kaplan DR, Cantley LC: P13K: downstream AKTion blocks apoptosis. Cell 1997;88: 435–437.

    Article  PubMed  CAS  Google Scholar 

  82. Fujimoto M, Bradney AP, Poe JC, Steeber DA, Tedder TF: Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity 1999;11:191–200.

    Article  PubMed  CAS  Google Scholar 

  83. Brooks SR, Li X, Volanakis EJ, Carter RH: Systematic analysis of the role of CD19 cytoplasmic tyrosines in enhancement of activation in Daudi human B cells: clustering of phosphalipase C and Vav and of Grb2 and Sos with different CD19 tyrosines. J Immunol 2000;164:3123–3131.

    PubMed  CAS  Google Scholar 

  84. Songyang Z, Shoelson SE, Chaudhuri M, et al.: SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767–778.

    Article  PubMed  CAS  Google Scholar 

  85. Langlet C, Bernard A-M, Dretot P, He H-T: Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol 2000;12:250.

    Article  PubMed  CAS  Google Scholar 

  86. Aman MJ, Ravichandran KS: A requirement for lipid rafts in B cell receptor induced Ca+2 flux. Curr Biol 2000;10:393.

    Article  PubMed  CAS  Google Scholar 

  87. Cheng PC, Dykstra ML, Mitchell RN, Pierce SK: A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 1999;190:1549.

    Article  PubMed  CAS  Google Scholar 

  88. Deans JP, Robbins SM, Polyak MJ, Savage JA: Rapid redistribution of CD20 to a low density detergent-insoluble membrane compartment. J Biol Chem 1998;273:344.

    Article  PubMed  CAS  Google Scholar 

  89. Hostager BS, Catlett IM, Bishop GA: Recruitment of CD40 and tumor necrosis factor receptor-associated factors 2 and 3 to membrane microdomains during CD40 signaling. J Biol Chem 2000;275:15,392.

    Article  CAS  Google Scholar 

  90. Sato S, Miller AS, Inaoki M, et al.: CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 1996;5: 551–562.

    Article  PubMed  CAS  Google Scholar 

  91. O'Keefe TL, Williams GT, Davies SL, Neuberger MS: Hyperresponsive B cells in CD22-deficient mice. Science 1996;274:798–801.

    Article  PubMed  Google Scholar 

  92. Hibbs ML, Tarlinton DM, Ames J, et al.: Multiple defects in the immune system of Lyn-deficient mice, culmirating in autoimmune disease. Cell 1995;83:301–311.

    Article  PubMed  CAS  Google Scholar 

  93. Chan VWF, Meng F, Soriano P, Defranco AL, Lowell CA: Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 1997;7:69–81.

    Article  PubMed  CAS  Google Scholar 

  94. Chan VWF, Lowell CA, DeFranco AL: Defective negative regulation of antigen receptor signaling in Lyn-deficient B lymphocytes. Curr Biol 1998;8:545–553.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, M., Poe, J.C., Hasegawa, M. et al. CD19 regulates intrinsic B lymphocyte signal transduction and activation through a novel mechanism of processive amplification. Immunol Res 22, 281–298 (2000). https://doi.org/10.1385/IR:22:2-3:281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:22:2-3:281

Key Words

Navigation