Skip to main content

Advertisement

Log in

The link between exocrine pancreatic cancer and the endocrine pancreas

  • Published:
International Journal of Pancreatology Aims and scope Submit manuscript

Summary

Background. The histogenesis of pancreatic cancer is still debatable. Ductal, ductular, and acinar cells all have been declared the tumor progenitor cells. Our long-term human and experimental studies indicate that pancreatic ductal adenocarcinomas arise within ductal cells and islets. Supporting studies are presented in this article.

Methods. Several human studies and experimental studies on Syrian hamsters conducted within the last 20 years were used in this article. Hamster and human islets were established, and their growth and morphologic changes were examined electron microscopically, immunohistochemically, cytogenetically, and molecular biologically.

Results. Studies using the hamster pancreatic cancer model showed that most pancreatic adenocarcinomas develop within islets, most probably from stem cells, which are also believed to be the progenitor cells for tumors that develop within ducts. Studies in newly established human and hamster islets culture validated the immense potential of islet cells to differentiate and become malignant. The higher susceptibility of islet cells to become malignant could be related to their high drug-metabolizing enzymes and their high proliferation rate. Dietary studies indicate that the promoting effect of a high-fat diet on pancreatic carcinogenesis is unrelated to the energy intake, but rather is related to its effect on islet cell replication.

Conclusion. Experimental and human studies during 20 years of research in our laboratories point to the importance of pancreatic islets in the development of ductal-type adenocarcinomas. We believe that pancreatic cancer that develops within ducts, but more frequently within islets, derives from pancreatic stem cells that are distributed within the ductal trees and within the islets

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer incidence. CA: A Cancer Journal for Clinicians 1982–1997.

  2. Longnecker DS, Shinozuka H, Dekker A. Focal acinar cell dysplasi in human pancreas. Cancer 1980; 45: 534–540.

    Article  PubMed  CAS  Google Scholar 

  3. Egami H, Takiyama Y, Chaney WG, Cano M, Fujii H, Tomioka T, et al. Comparative studies on expression of tumor-associated antigens in human and induced pancreatic cancer in Syrian hamsters. Int J Pancreatol 1990; 7: 91–100.

    PubMed  CAS  Google Scholar 

  4. Takiyama Y, Egami H, Pour PM. Expression of human tumor-associated antigens in pancreatic cancer induced in Syrian hamsters. Am J Pathol 1990; 136: 707–715.

    PubMed  CAS  Google Scholar 

  5. Fujii HH, Egami H, Chaney W, Pour P, Pelling J. Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropy)amine contain a K-ras oncogene with a point-mutated codon 12. Mol Carcinog 1990; 3: 296–301.

    Article  PubMed  CAS  Google Scholar 

  6. Pour PM, Wilson, R. Experimental pancreas tumor, in: Moossa AR, ed. Cancer of the Pancreas. Williams and Wilkins, Baltimore, 1980; pp. 37–158.

    Google Scholar 

  7. Pour PM. Experimental pancreatic cancer. Am J Surg Pathol 1989; 13: 96–103.

    PubMed  Google Scholar 

  8. Mogaki M, Hirota M, Chaney WG, Pour PM. Comparison of p53 protein expression and cellular localization in human and hamster pancreatic cell lines. Carcinogenesis 1993; 14: 2589–2594.

    Article  PubMed  CAS  Google Scholar 

  9. Pour P, Mohr U, Cardesa A, Althoff J, Krüger FW. Pancreatic neoplasms in an animal model: morphological, biological, and comparative studies. Cancer 1975; 36: 379–389.

    Article  PubMed  CAS  Google Scholar 

  10. Pour PM, Egami H, Takiyama Y. Patterns of growth and metastases of induced pancreatic cancer in relation to the prognosis and its clinical implications. Gastroenterology 1991; 100: 529–536.

    PubMed  CAS  Google Scholar 

  11. Pour, PM. Islet cells as a component of pancreatic ductal neoplasms. I. Experimental study. Ductular cells, including islet cell precursors, and primary progenitor cells of tumors. Am J Pathol 1978; 90: 295–316.

    PubMed  CAS  Google Scholar 

  12. Pour PM, Runge RG, Birt D, Gingell R, Lawson T, Nagel D, et al. Current knowledge of pancreatic carcinogenesis in the hamster and its relevance to the human disease. Cancer 1981; 47: 1573–1589.

    Article  PubMed  CAS  Google Scholar 

  13. Pour, PM. Histogenesis of exocrine pancreatic cancer in the hamster model. Environ Health Perspect 1984; 56: 229–243.

    Article  PubMed  CAS  Google Scholar 

  14. Pour PM, Weide L, Liu G, Kazakoff K, Scheetz M, Toshkov RS, et al. Experimental evidence for the origin of ductal type adenocarcinoma from the islets of Langerhans. Am J Pathol 1997; 150: 2167–2180.

    PubMed  CAS  Google Scholar 

  15. Pour PM. The role of Langerhans islets in pancreatic ductal adenocarcinoma. Frontier Biosci 1997; 2: d271–282.

    CAS  Google Scholar 

  16. Fienhold MA, Kazakoff K, Pour PM. The effect of Streptozotocin and high-fat diet on BOP-induced tumors in the pancreas and in the submandibular gland of hamsters bearing transplants of homologous islets. Cancer Let 1997; 117: 155–160.

    Article  CAS  Google Scholar 

  17. Pour PM, Sayed SE, Wolf GL. Considerations on the incidence of pancreatic cancer. Cancer Lett 1980; 10: 151–154.

    Article  PubMed  CAS  Google Scholar 

  18. Pour PM, Sayed S, Sayed G, Wolf GL. Hyperplastic preneoplastic and neoplastic lesions found in 83 human pancreas. Am J Clin Pathol 1982; 77: 137–152.

    PubMed  CAS  Google Scholar 

  19. Pour PM, Sayed S, Sayed G, Wolf GL. Exocrine pancreas alterations and related neoplasia in selected autopsy material. Eur J Cancer Clin Oncol 1981; 17: 943.

    Google Scholar 

  20. Pour P, Salmasi SZ. Ductular origin of pancreatic cancer and its multiplicity in man comparable to experimentally induced tumors. A preliminary study. Cancer Lett 1979; 6: 89–97.

    Article  PubMed  CAS  Google Scholar 

  21. Tomioka T, Andrén-Sandberg A, Fujii H, Egami H, Takiyama Y, Pour PM. Comparative histopathological findings in the pancreas of cigarette smokers and nonsmokers. Cancer Lett 1990; 55: 121–128.

    Article  PubMed  CAS  Google Scholar 

  22. Kimura W, Morikane K, Esaki Y, Chan WC, Pour PM. Histological and biological patterns of microscopic ductal adenocarcinomas detected incidentally at autopsy. Cancer 1998; 82: 1839–1849.

    Article  PubMed  CAS  Google Scholar 

  23. Pour PM, Morohoshi T. Ductal adenocarcinoma, in: Atlas of Exocrine Pancreatic Tumors. Morphology, Biology and Diagnosis with an International Guide for Tumor Classification. Springer Verlag, Japan, 1994; pp 117–154.

    Google Scholar 

  24. Bell RH, McCullough PJ, Pour PM. Influence of diabetes on susceptibility to experimental pancreatic cancer. Am J Surg 1988; 155: 159–164.

    Article  PubMed  Google Scholar 

  25. Bell RH, Sayers HJ, Pour PM, Ray MB, McCullough PJ. Importance of diabetes in inhibition of pancreatic cancer by streptozotocin. J Surg Res 1989; 46: 515–519.

    Article  PubMed  CAS  Google Scholar 

  26. Pour PM, Kazakoff K, Carlson K. Inhibition of Streptozotocin-induced islet cell tumors and BOP-induced exogenous pancreatic tumors in Syrian hamsters. Cancer Res 1990; 50: 1634–1639.

    PubMed  CAS  Google Scholar 

  27. Bell RH, Pour PM. Induction of pancreatic tumors in genetically non-diabetic but not in diabetic Chinese hamsters. Cancer Lett 1987; 34: 221–230.

    Article  PubMed  CAS  Google Scholar 

  28. Pour PM, Kazakoff K. Stimulation of islet cell proliferation enhances pancreatic ductal carcinogenesis in the hamster model. Am J Pathol 1996; 149: 1017–1025.

    PubMed  CAS  Google Scholar 

  29. Pour PM, Weide LG, Ueno K, Corra S, Kazakoff K. Submandibular gland as a site for islet transplantation. Int J Pancreatol 1992; 12: 187–191.

    PubMed  CAS  Google Scholar 

  30. Pour PM, Weide L, Liu G, Kazakoff K, Scheetz M, Toshkov I, et al. Experimental evidence for the origin of ductal type adenocarcinoma from the islets of Langerhans. Am J Pathol 1997; 150: 2167–2180.

    PubMed  CAS  Google Scholar 

  31. Fienhold MA, Kazakoff K, Pour PM. The effect of streptozotocin and a high-fat diet on BOP-induced tumors in the pancreas and in the submandibular gland of hamsters bearing transplants of homologous islets. Cancer Lett 1997; 117: 155–160.

    Article  PubMed  CAS  Google Scholar 

  32. Bouwens L, De Blay E. Islet morphogenesis and stem cell markers in rat pancreas. J Histochem Cytochem 1996; 44: 947–951.

    PubMed  CAS  Google Scholar 

  33. Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright CVE, et al. Expression of STF1, a putative insulin gene transcription factor, in b-cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development (Cambridge, UK) 1995; 121: 11–18.

    PubMed  CAS  Google Scholar 

  34. Jensen J, Serup P, Karlsen C, Funder TF, Madsen OD. mRNA profiling of rat islet tumors reveals Nkx 6.1 as a β-cell specific homeodomain transcription factor. J Biol Chem 1996; 271: 18,749–18,758.

    CAS  Google Scholar 

  35. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994; 371: 606–609.

    Article  PubMed  CAS  Google Scholar 

  36. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. Pdx-1 is required for pancreatic outgrowth and differentiation of rostral duodenum. Development 1996; 122: 983–995.

    PubMed  CAS  Google Scholar 

  37. Ohlsson H, Karlsson K, Edlund T. IDX-1, a homeodomain-containing transactivator of the insulin gene. EMBO J 1993; 12: 4251–4259.

    PubMed  CAS  Google Scholar 

  38. Serup P, Petersen HV, Petersen EE, Edlund H, Leonard J, Petersen JS, et al. Homeodomain protein IDX-1/STF1 is expressed in a subset of islet cells and promotes rat insulin 1 gene expression dependent on an intact E1 helixloop-helix factor binding site. Biochem J 1995; 310: 997–1003.

    PubMed  CAS  Google Scholar 

  39. Schmied B, Liu G, Moyer MP, Hernberg ISB, Sanger W, Batra S, et al. Induction of adenocarcinoma from hameter pancreatic islet cells treated with N-nitrosobis(2-oxopropyl)amine in vitro. Carcinogenesis, 1999; 20: 317–324.

    Article  PubMed  CAS  Google Scholar 

  40. Wacke R, Kirchner A, Prall F, Nizze H, Schmidt W, Fisher W, et al. Up-regulation of cytochrome P450 1A2, 2C9, and 2E1 in chronic pancreatitis. Pancreas 1998; 16: 521–528.

    Article  PubMed  CAS  Google Scholar 

  41. Foster JR, Idle JR, Hardwick JP, Bars R, Scott P, Braganza JM. Induction of drug-metabolizing enzymes in human pancreatic cancer and chronic pancreatitis. J Pathol 1993; 169: 457–463.

    Article  PubMed  CAS  Google Scholar 

  42. Birt DF, Salmasi S, Pour PM. Enhancement of experimental pancreatic cancer in Syrian golden hamsters by dietary fat. J Natl Cancer Inst 1981; 67: 1327–1332.

    PubMed  CAS  Google Scholar 

  43. Kazakoff K, Cardesa T, Liu J, Adrian TE, Bagchi D, Bagchi M, et al. Effects of voluntary physical exercise on high-fat diet-promoted pancreatic carcinogenesis in the hamster model. Nutr Cancer 1996; 26: 265–279.

    Article  PubMed  CAS  Google Scholar 

  44. Birt D, Pour PM, Nagel DL, Barnett T, Blackwood D, Duysen E. Dietary energy restriction does not inhibit pancreatic carcinogenesis by N-nitrosobis(2-oxopropyl)amine in the Syrian hamster. Carcinogenesis 1997; 18: 2107–2111.

    Article  PubMed  CAS  Google Scholar 

  45. Yamao K, Nakazawa S, Fujimoto M, Yamada M, Milchgrub S, Albores-Saavedra J. Intraductal papillary mucinous tumors, non-invasive and invasive. In: Pour P, Konishi Y, Klöppel G, Longnecker DS, eds. Atlas of Exocrine Pancreatic Tumors. Morphology, Biology and Diagnosis with an International Guide for Tumor Classification. Springer Verlag, Japan, 1994; pp 117–154.

    Google Scholar 

  46. Dawiskiba S, Pour PM, Stenram U, Sundler F, Andrén-Sandberg A. Immunohistochemical characterization and endocrine cells in experimental exocrine pancreatic cancer in the Syrian golden hamster. Int J Pancreatol 1992; 11: 87–96.

    PubMed  CAS  Google Scholar 

  47. Pour PM, Permert J, Mogaki M, Fujii H, Kazakoff K. Endocrine aspects of exocrine cancer of the pancreas. Their patterns and suggested biological significance. Am J Clin Pathol 1993; 100: 223–230.

    PubMed  CAS  Google Scholar 

  48. Reid JD, Yuh S-L, Petrelli M, Jaffe MB. Ductuloinsular tumors of the pancreas. Cancer 1982; 49: 908–915.

    Article  PubMed  CAS  Google Scholar 

  49. Schlosnagle DC, Campbell WG. The papillary and solid neoplasm of the pancreas: A report of two cases with electron microscopy, one containing neurosecretory granules. Cancer 1981; 47(11): 2603–2610.

    Article  PubMed  CAS  Google Scholar 

  50. Eusebi V, Capella C, Bondi A, Sessa F, Vezzadinia P, Mancini AM. Endocrine-paracrine cells in pancreatic exocrine carcinomas. Histopathology 1981; 5: 599–613.

    Article  PubMed  CAS  Google Scholar 

  51. Cubilla AL, Fitzgerald PJ. Tumors of the Exocrine Pancreas. Atlas of Tumor Pathology, 2nd Series, Fascicle 19. Armed Forces Institute, Washington DC, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz M. Pour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pour, P.M., Schmied, B. The link between exocrine pancreatic cancer and the endocrine pancreas. International Journal of Pancreatology 25, 77–87 (1999). https://doi.org/10.1385/IJGC:25:2:77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:25:2:77

Key Words

Navigation