Skip to main content
Log in

Altered chemokine receptor profile on circulating leukocytes in human heart failure

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Chemokines and their receptors have been implicated in the pathogenesis of different forms of heart failure (HF). We examined CC-and CXC-chemokine receptor expression in fresh peripheral blood leukocyte populations from 24 end-stage HF patients consisting of coronary artery disease (CAD; n=6) and hypertrophic cardiomyopathy (HCM; n=7) or idiopathic dilated cardiomyopathy (IDCM; n=8) or valvular disease (VD; n=3) and compared the data with 18 healthy controls. Levels of CCR1, 2, 3, 4, 5, and 7, and CXCR1, 2, 3, and 4 were measured by flow cytometry, and the expression profile was assessed as molecules of equivalent soluble fluorochrome units as well as frequency (percentage) of CD3+, CD4+, and CD8+ T cells and monocytes or granulocytes. Frequency of CD3+ CXCR4+, CD3+ CXCR1+, and CD3+ CXCR3+ cells was significantly increased in HF patients, whereas only CCR7 and CXCR4 expression levels were elevated on CD3+ cells. Both CD4+ CXCR4+ and CD8+ CXCR4+ cell frequencies were significantly increased irrespective of cardiac disease etiology. Elevated CCR7 expression was less pronounced on CD4+ than CD8+ cells in patients with CAD and IDCM. Expression of CXCR4 on CD8+ cells was upregulated substantially, regardless of the cause of disease. CD8+ CXCR1+ and CD8+ CXCR3+ but not CD4+ CXCR1+ or CD4+ CXCR3+ cells were increased in the HF patients with IDCM and CAD, respectively. Expression of CXCR1 or CXCR3 on both CD4+ and CD8+ cells did not differ in all the groups. For monocytes, frequency of CD14+ CCR1+ and CD14+ CCR2+ cells was significantly decreased in CAD patients, whereas, increase in CD14+ CXCR4+ cell frequency was accompanied with elevated CXCR4 expression. On granulocytes, CXCR1 and CXCR2 receptors were downregulated in all patients, compared with controls. Our results suggest that the altered expression profile of CC- and CXC-chemokine receptors on circulating leukocyte populations involves enhanced activation of the immune system, perhaps as part of the pathogenic mechanisms in HF. Modulation of the chemokine network could offer interesting novel therapeutic modalities for end-stage HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haddy, F. J. (2003) Heart failure-incidence and survival. N. Engl. J. Med. 348, 660.

    Article  PubMed  Google Scholar 

  2. Conraads, V. M., Bosmans, J. M., and Vrints, C. J. (2002) Chronic heart failure: an example of a systemic chronic inflammatory disease resulting in cachexia. Int. J. Cardiol. 85, 33–49.

    Article  PubMed  Google Scholar 

  3. Matsumori, A., Matoba, Y., and Sasayama, S. (1995) Dilated cardiomyopathy associated with hepatitis C virus infection. Circulation 92, 2519–2525.

    PubMed  CAS  Google Scholar 

  4. Shioi T., Matsumori, A., and Sasayama, S. (1996) Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation 94 2930–2937.

    PubMed  CAS  Google Scholar 

  5. Bozkurt, B., Kribbs, S. B., Clubb, F. J., Jr., et al. (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-β promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97, 1382–1391.

    PubMed  CAS  Google Scholar 

  6. MacGowan, G. A., Mann, D. L., Kormos, R. L., Feldman, A. M., and Murali, S. (1997) Circulating interleukin-6 in severe heart failure. Am. J. Cardiol. 79, 1128–1131.

    Article  PubMed  CAS  Google Scholar 

  7. Bristow, M. R. (1998) Why does the myocardium fail? Insights from basic science. Lancet 352 (Suppl. 1), SI8-SI14.

    Article  PubMed  Google Scholar 

  8. Hasper, D., Hummel, M., Kleber, F. X., Reindl, I., and Volk, H. D. (1998) Systemic inflammation in patients with heart failure. Eur. Heart J. 19, 761–765.

    Article  PubMed  CAS  Google Scholar 

  9. Aukrust, P., Damas, J. K., Gullestad, L., and Froland, S. S. (2001) Chemokines in myocardial failure—pathogenic importance and potential therapeutic targets. Clin. Exp. Immunol. 124, 343–345.

    Article  PubMed  CAS  Google Scholar 

  10. Levine, B., Kalman, J., Mayer, L., Fillit, H. M., and Packer, M. (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241.

    Article  PubMed  CAS  Google Scholar 

  11. Matsumori, A., Yamada, T., Suzuki, H., Matoba, Y., and Sasayama, S. (1994) Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br. Heart J. 72, 561–566.

    PubMed  CAS  Google Scholar 

  12. Mazzone, A., De Servi, S., Vezzoli, M., et al. (1999) Plasma levels of interleukin 2, 6, 10 and phenotypic characterization of circulating T lymphocytes in ischemic heart disease. Atherosclerosis 145, 369–374.

    Article  PubMed  CAS  Google Scholar 

  13. Sharma, R., Bolger, A. P., Li, W., et al. (2003) Elevated circulating levels of inflammatory cytokines and bacterial endotoxin in adults with congenital heart disease. Am. J. Cardiol. 92, 188–193.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrari, R., Bachetti, T., Confortini, R., et al. (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92, 1479–1486.

    PubMed  CAS  Google Scholar 

  15. Aukrust, P., Ueland, T., Lien, E., et al. (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 83, 376–382.

    Article  PubMed  CAS  Google Scholar 

  16. Aukrust, P., Ueland, T., Muller, F., et al. (1998) Elevated circulating levels of C−C chemokines in patients with congestive heart failure. Circulation 97, 1136–1143.

    PubMed  CAS  Google Scholar 

  17. Damas, J. K., Gullestad, L., Aass, H., et al. (2001) Enhanced gene expression of chemokines and their corresponding receptors in mononuclear blood cells in chronic heart failure—modulatory effect of intravenous immunoglobulin. J. Am. Coll. Cardiol. 38, 187–193.

    Article  PubMed  CAS  Google Scholar 

  18. Luster, A. D. (1998) Chemokines—chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445.

    Article  PubMed  CAS  Google Scholar 

  19. Horuk, R. (2001) Chemokine receptors. Cytokine Growth Factor Rev. 12 313–335.

    Article  PubMed  CAS  Google Scholar 

  20. Olson, T. S. and Ley, K. (2002) chemokines and chemokine receptors in leukocyte trafficking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R7-R28.

    PubMed  CAS  Google Scholar 

  21. Murdoch, C. and Finn, A. (2000) Chemokine receptors and their role in inflammation and infectious diseases. Blood 95, 3032–3043.

    PubMed  CAS  Google Scholar 

  22. Cook, D. N., Beck, M. A., Coffman, T.M., et al. (1995) Requirement of MIP-1α for an inflammatory response to viral infection. Science 269, 1583–1585.

    Article  PubMed  CAS  Google Scholar 

  23. Fuse, K., Kodama, M., Hanawa, H., et al. (2001) Enhanced expression and production of monocyte chemoattractant protein-1 in myocarditis. Clin. Exp. Immunol. 124, 346–352.

    Article  PubMed  CAS  Google Scholar 

  24. Machado, F. S., Martins, G. A., Aliberti, J. C., Mestriner, F. L., Cunha, F. Q., and Silva, J. S. (2000) Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Circulation 102, 3003–3008.

    PubMed  CAS  Google Scholar 

  25. Talvani, A., Rocha, M. O., Ribeiro, A. L., Correa-Oliveira, R., and Teixeira, M. M. (2004) Chemokine receptor expression on the surface of peripheral blood mononuclear cells in Chagas disease. J. Infect. Dis. 189, 214–220.

    Article  PubMed  CAS  Google Scholar 

  26. Shioi, T., Matsumori, A., Kihara, Y., et al. (1997) Increased expression of interleukin-1β and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ. Res. 81, 664–671.

    PubMed  CAS  Google Scholar 

  27. Behr, T. M., Wang, X., Aiyar, N., et al. (2000) Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure. Circulation 102, 1315–1322.

    PubMed  CAS  Google Scholar 

  28. Kakio, T., Matsumori, A., Ono, K., Ito, H., Matsushima, K., and Sasayama, S. (2000) Roles and relationship of macrophages and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the ischemic and reperfused rat heart. Lab. Investing. 80, 1127–1136.

    CAS  Google Scholar 

  29. Kolattukudy, P. E., Quach, T., Bergese, S., et al. (1998) Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am. J. Pathol. 152, 101–111.

    PubMed  CAS  Google Scholar 

  30. Damas, J. K., Gullestad, L., Ueland, T. et al. (2000) CXC-chemokines, a new group of cytokines in congestive heart failure—possible role of platelets and monocytes. Cardiovasc. Res. 45, 428–436.

    Article  PubMed  CAS  Google Scholar 

  31. Damas, J. K., Eiken, H. G., Oie, E., et al. (2000) Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc. Res. 47, 778–787.

    Article  PubMed  CAS  Google Scholar 

  32. Gerszten, R. E., Mach, F., Sauty, A., Rosenzweig, A., and Luster, A. D. (2000) Chemokines, leukocytes, and atherosclerosis. J. Lab. Clin. Med. 136, 87–92.

    Article  PubMed  CAS  Google Scholar 

  33. Boring, L., Gosling, J., Cleary, M., and Charo, I. F. (1998) Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897.

    Article  PubMed  CAS  Google Scholar 

  34. Boisvert, W. A., Santiago, R., Curtiss, L. K., and Terkeltaub, R. A. (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Investig. 101, 353–563.

    PubMed  CAS  Google Scholar 

  35. Gu, L., Okada, Y., Clinton, S. K. et al. (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281.

    Article  PubMed  CAS  Google Scholar 

  36. Aukrust, P., Berge, R. K., Ueland, T., et al. (2001) Interaction between chemokines and oxidative stress: possible pathogenic role in acute coronary syndromes. J. Am. Coll. Cardiol. 37, 485–491.

    Article  PubMed  CAS  Google Scholar 

  37. Mach, F., Sauty, A., Iarossi, A. S., et al. (1999) Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Investig. 104, 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  38. Devaux, B., Scholz, D., Hirche, A., Klovekorn, W. P., and Schaper, J. (1997) Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur. Heart J. 18, 470–479.

    PubMed  CAS  Google Scholar 

  39. Damas, J. K., Aukrust, P., Ueland, T., et al. (2001) Monocyte chemoattractant protein-1 enhances and interleukin-10 suppresses the production of inflammatory cytokines in adult rat cardiomyocytes. Basic Res. Cardiol. 96, 345–352.

    Article  PubMed  CAS  Google Scholar 

  40. Koch, A. E., Polverini, P. J., Kunkel, S. L., et al. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798–1801.

    Article  PubMed  CAS  Google Scholar 

  41. Hesselgesser, J., Taub, D., Baskar, P., et al. (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1alpha is mediated by the chemokine receptor CXCR4. Curr. Biol. 8, 595–598.

    Article  PubMed  CAS  Google Scholar 

  42. Li, N. and Karin, M. (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J. 13, 1137–1143.

    PubMed  CAS  Google Scholar 

  43. Valen, G., Yan, Z. Q., and Hansson, G. K. (2001) Nuclear factor kappa-B and the heart. J. Am. Coll. Cardiol. 38, 307–314.

    Article  PubMed  CAS  Google Scholar 

  44. Spinale, F. G., Coker, M. L., Heung, L. J., et al. (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102, 1944–1949.

    PubMed  CAS  Google Scholar 

  45. Yamamoto, T., Eckes, B., Mauch, C., Hartmann, K., and Krieg, T. (2000) Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop. J. Immunol. 164, 6174–6179.

    PubMed  CAS  Google Scholar 

  46. Heeschen C., Lehmann, R., Honold, J., et al. (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109, 1615–1622.

    Article  PubMed  Google Scholar 

  47. Valgimigli, M., Rigolin, G. M., Fucili, A., et al. (2004) CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 110, 1209–1212.

    Article  PubMed  CAS  Google Scholar 

  48. Martin-Fontecha, A., Sebastiani, S., Hopken, U. E., et al. (2003). Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621.

    Article  PubMed  CAS  Google Scholar 

  49. Vieira, P. L., de Jong, E. C., Wiernga, E. A., Kapsenberg, M. L., and Kalinski, P. (2000) Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J. Immunol. 164, 4507–4512.

    PubMed  CAS  Google Scholar 

  50. Athanassopoulos, P., Vaessen, L. M., Maat, A. P., Balk, A. H., Weimar, W., and Bogers, A. J. (2004) Peripheral blood dendritic cells in human end-stage heart failure and the early post-transplant period: evidence for systemic Th1 immune responses. Eur. J. Cardiothorac. Surg. 25, 619–626.

    Article  PubMed  Google Scholar 

  51. Ko, S., Deiwick, A., Jager, M. D., et al. (1999) The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nat. Med. 5, 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  52. Takata, H., Tomiyama, H., Fujiwara, M., Kobayashi, N., and Takiguchi, M. (2004) Cutting edge: expression of chemokine receptor CXCR1 on human effector CD8+ T cells. J. Immunol. 173, 2231–2235.

    PubMed  CAS  Google Scholar 

  53. Noutsias, M., Pauschinger, M., Schultheiss, H., and Schultheiss U. Kh. (2002) Phenotypic characterization of infiltrates in dilated cardiomyopathy—diagnostic significance of T-lymphocytes and macrophages in inflammatory cardiomyopathy. Med. Sci. Monit. 8, CR478-CR487.

    PubMed  Google Scholar 

  54. Varda-Bloom, N., Leor, J., Ohad, D. G., et al. (2000) Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. J. Mol. Cell. Cardiol. 32, 2141–2149.

    Article  PubMed  CAS  Google Scholar 

  55. Holzinger, C., Schollhammer, A., Imhof, M., et al. (1995) Phenotypic patterns of mononuclear cells in dilated cardiomyopathy. Circulation 92, 2876–2885.

    PubMed  CAS  Google Scholar 

  56. Waehre, T., Damas, J. K., Gullestad, L., et al. (2003) Hydroxymethylglutaryl coenzyme a reductase inhibitors down-regulate chemokines and chemokine receptors in patients with coronary artery disease. J. Am. Coll. Cardiol. 41, 1460–1467.

    Article  PubMed  CAS  Google Scholar 

  57. Schioppa, T., Uranchimeg, B., Saccani, A., et al. (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402.

    Article  PubMed  CAS  Google Scholar 

  58. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864.

    Article  PubMed  CAS  Google Scholar 

  59. Khandaker, M. H., Mitchell, G., Xu, L., et al. (1999) Metalloproteinases are involved in lipopolysaccharide-and tumor necrosis factor-α-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood 93, 2173–2185.

    PubMed  CAS  Google Scholar 

  60. Richardson, R. M., Pridgen, B. C., Haribabu, B., Ali, H., and Snyderman, R. (1998) Differential cross-regulation of the human chemokine receptors CXCR1 and CXCR2. Evidence for time-dependent signal generation. J. Biol. Chem. 273 23,830–23,836.

    CAS  Google Scholar 

  61. Shalekoff, S. and Tiemessen, C. T. (2001) Duration of sample storage dramatically alters expression of the human immunodeficiency virus coreceptors CXCR4 and CCR5. Clin. Diagn. Lab. Immunol. 8, 432–436.

    Article  PubMed  CAS  Google Scholar 

  62. Berhanu, D., Mortari, F., De Rosa, S. C. and Roederer, M. (2003) Optimized lymphocyte isolation methods for analysis of chemokine receptor expression. J. Immunol. Methods 279, 199–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ad J. J. C. Bogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athanassopoulos, P., Vaessen, L.M.B., Balk, A.H.M.M. et al. Altered chemokine receptor profile on circulating leukocytes in human heart failure. Cell Biochem Biophys 44, 83–101 (2006). https://doi.org/10.1385/CBB:44:1:083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:1:083

Index Entries

Navigation