Skip to main content
Log in

Extraction of membrane proteins from a living cell surface using the atomic force microscope and covalent crosslinkers

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The force curve mode of the atomic force microscope (AFM) was applied to extract intrinsic membrane proteins from the surface of live cells using AFM tips modified by amino reactive bifunctional covalent crosslinkers. The modified AFM tips were individually brought into brief contact with the living cell surface to form covalent bonds with cell surface molecules. The force curves recorded during the detachment process from the cell surface were often characterized by an extension of a few hundred nanometers followed mostly by a single step jump to the zero force level. Collection and analysis of the final rupture force revealed that the most frequent force values (of the force) were in the range of 0.4–0.6 nN. The observed rupture force most likely represented extraction events of intrinsic membrane proteins from the cell membrane because the rupture force of a covalent crosslinking system was expected to be significantly larger than 1.0 nN, and the separation force of noncovalent ligand-receptor pairs to be less than 0.2 nN, under similar experimental conditions. The transfer of cell surface proteins to the AFM tip was verified by recording characteristic force curves of protein stretching between the AFM tips used on the cell surface and a silicon surface modified with amino reactive bifunctional crosslinkers. This method will be a useful addition to bionanotechnological research for the application of AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohnesorge, F. M., Horber, J. K., Haberle, W., Czerny, C. P., Smith, D. P., and Binnig, G. (1997) AFM review study on pox viruses and living cells. Biophys. J. 73, 2183–2194.

    PubMed  CAS  Google Scholar 

  2. Hansma, H. G. (2001) Surface biology of DNA by atomic force microscopy. Annu. Rev. Phys. Chem. 52, 71–92.

    Article  PubMed  CAS  Google Scholar 

  3. Zlatanova, J., Lindsay, S. M., and Leuba, S. H. (2000) Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mol. Biol. 74, 37–61.

    Article  PubMed  CAS  Google Scholar 

  4. Hansma, P. K., Elings, V. B., Marti, O., and Bracker, C. E. (1988) Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242, 209–216.

    Article  PubMed  CAS  Google Scholar 

  5. Kacher, C. M., Weiss, I. M., Stewart, R. J., Schmidt, C. F., Hansma, P. K., Radmacher, M., and Fritz, M. (2000) Imaging microtubules and kinesin decorated microtubules using tapping mode atomic force microscopy in fluids. Eur. Biophys. J. 28, 611–620.

    Article  PubMed  CAS  Google Scholar 

  6. Ikai, A. (1996) STM and AFM of bio/organic molecules and structures. Surface Sci. Rep. 26, 261–332.

    Article  CAS  Google Scholar 

  7. Jena, B. P. and Hörber, J. K. H., eds. Atomic Force Microscopy in Cell Biology. Academic Press, Tokyo, 2002.

    Google Scholar 

  8. Radmacher, M., Fritz, M., and Hansma, P. K. (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys. J. 69, 264–270.

    PubMed  CAS  Google Scholar 

  9. Leckband, D. (2000) Measuring the forces that control protein interactions. Annu. Rev. Biophys. Biomol. Struct. 29, 21–26.

    Article  Google Scholar 

  10. Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P., and Hansma, P. K. (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567.

    PubMed  CAS  Google Scholar 

  11. Butt, H. J. (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60, 1438–1444.

    CAS  PubMed  Google Scholar 

  12. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481.

    Article  PubMed  CAS  Google Scholar 

  13. Moy, V. T., Florin, E. L., and Gaub, H. E. (1994) Intermolecular forces and energies between ligands and receptors. Science 266, 257–259.

    Article  PubMed  CAS  Google Scholar 

  14. Yuan, C., Chen, A., Kolb, P., and Moy, V. T. (2000) Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39, 10219–10223.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, G. U., Chrisey, L. A., and Colton, R. J. (1994) Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773.

    Article  PubMed  CAS  Google Scholar 

  16. Meiners, J. C. and Quake, S. R. (2000) Femtonewton force spectroscopy of single extended DNA molecules. Phys. Rev. Lett. 84, 5014–5017.

    Article  PubMed  CAS  Google Scholar 

  17. Mitsui, K., Hara, M., and Ikai, A. (1996) Mechanical unfolding of α2-macroglobulin with atomic force microscope. FEBS Lett. 385, 29–33.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, T. and Ikai, A. (1999) Protein stretching III. Force extension curves of tethered bovine carbonic anhydrase B to the silicon substrate under native, intermediate and denaturing conditions. Jap. J. Appl. Phys. 38, 3912–3917.

    Article  CAS  Google Scholar 

  19. Alam, M. T., Yamada, T., Carlsson, U., and Ikai, A. (2002) The importance of being knotted: effects of the C-terminal knot structure on enzymatic and mechanical properties of bovine carbonic anhydrase II. FEBS Lett. 519, 35–40.

    Article  PubMed  CAS  Google Scholar 

  20. Hertadi, R. and Ikai, A. (2002) Unfolding mechanics of holo and apo calmodulins studied by atomic force microscope. Protein Sci. 11, 1532–1538.

    Article  PubMed  CAS  Google Scholar 

  21. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  22. Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E., and Fernandez, J. M. (1999) The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384.

    Article  PubMed  CAS  Google Scholar 

  23. Evans, E. (2001) Probing the relation between force-lifetime and chemistry in single molecule bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128.

    Article  PubMed  CAS  Google Scholar 

  24. Clarke, J. and Fernandez, J. M. (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699.

    Article  PubMed  Google Scholar 

  25. Schwesinger, F., Ros, R., Strunz, T., Anselmetti, D., Guntherodt, H. J., Honegger, A., et al. (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. USA 97, 9972–9977.

    Article  PubMed  CAS  Google Scholar 

  26. Jondle, D. M., Ambrosio, L., Vesenka, J., and Henderson, E. (1995) Imaging and manipulating chromosomes with the atomic force microscope. Chromosome Res. 3, 239–244.

    Article  PubMed  CAS  Google Scholar 

  27. Sagvolden, G., Giaever, I., Pettersen, E. O., and Feder, J. (1999) Cell adhesion force microscopy. Proc. Natl. Acad. Sci. USA 96, 471–476.

    Article  PubMed  CAS  Google Scholar 

  28. Fotiadis, D., Scheuring, S., Muller, S. A., Engel, A., and Muller, D. J. (2002) Imaging and manipulation of biological structures with the AFM. Micron 33, 385–397.

    Article  PubMed  CAS  Google Scholar 

  29. Xu, X. M. and Ikai, A. (1998) Retrieval and amplification of single-copy genomic DNA from a nanometer region of chromosomes: A new and potential application of AFM in genomic research. Biochem. Biophys. Res. Commun. 248, 744–748.

    Article  PubMed  CAS  Google Scholar 

  30. Kim, H., Arakawa, H., Osada, T., and Ikai, A. (2002) Quantification of fibronectin and cell surface interactions by AFM. Colloids Surfaces B: Biointerfaces 25, 33–43.

    Article  CAS  Google Scholar 

  31. Ikai, A., Afrin, R., Itoh, A., Thogersen, H. C., Hayashi, Y., and Osada, T. (2002) Force measurements for membrane protein manipulation. Colloids Surfaces. B: Biointerfaces 23, 165–171.

    Article  CAS  Google Scholar 

  32. Osada, T., Uehara, H., Kim, H., and Ikai, A. (2003) mRNA analysis of single living cells. J. Nanobiotechnology 1, 1–8.

    Article  Google Scholar 

  33. Thoumine, O. and Meister, J. J. (2000) Dynamics of adhesive rupture between fibroblasts and fibronectin: microplate manipulations and deterministic model. Eur. Biophys. J. 29, 409–419.

    Article  PubMed  CAS  Google Scholar 

  34. Simpson, K. H., Bowden, M. G., Hook, M., and Anvari, B. (2002) Measurement of adhesive forces between S. epidermidis and fibronectin-coated surfaces using optical tweezers. Lasers Surg. Med. 31, 45–52.

    Article  PubMed  Google Scholar 

  35. Lehenkari, P. P. and Horton, M. A. (1999) Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem. Biophys. Res. Commun. 259, 645–650.

    Article  PubMed  CAS  Google Scholar 

  36. Bell, G. I. (1978) Models for the specific adhesion of cells to cells. Science 200, 618–627.

    Article  PubMed  CAS  Google Scholar 

  37. Evans, E. and Ritchie, K. (1999) Strength of a weak bond connecting flexible polymer chains. Biophys. J. 76, 2439–2447.

    PubMed  CAS  Google Scholar 

  38. Evans, E. and Ritchie, K. (1997) Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555.

    Article  PubMed  CAS  Google Scholar 

  39. Evans, E., Ritchie, K., and Merkel, R. (1995) Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68, 2580–2587.

    PubMed  CAS  Google Scholar 

  40. Evans, E. and Ludwig, F. (2000) Dynamic strengths of molecular anchoring and material cohesion in fluid biomembranes. J. Phys. Condens. Matter 12, A315-A320.

    Article  CAS  Google Scholar 

  41. Hutter, J. L. and Bechhoefer, J. (1993) Calibration of atomic-force microscope tips. Rev. Scientific Instruments 64, 1868–1873.

    Article  CAS  Google Scholar 

  42. Ikai, A., Idiris, A., Sekiguchi, H., Arakawa, H., and Nishida, S. (2002) Intra-and intermolecular mechanics of proteins and polypeptides studied by AFM: with applications. Appl. Surface Sci. 188, 506–512.

    Article  CAS  Google Scholar 

  43. Nishida, S. and Ikai, A. (2002) Combination of AFM with an objective-type TIRFM (total internal reflection fluorescence microscope) for nanomanipulation of single cells. Ultramicroscopy 91, 269–274.

    Article  PubMed  CAS  Google Scholar 

  44. Tao, N. J., Lindsay, S. M., and Lees, S. (1992) Measuring the microelastic properties of biological material. Biophys. J. 63, 1165–1169.

    PubMed  CAS  Google Scholar 

  45. Sneddon, I. N. (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57.

    Article  Google Scholar 

  46. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H., and Gaub, H. E. (1999) How strong is a covalent bond? Science 283, 1727–1730.

    Article  PubMed  CAS  Google Scholar 

  47. Desmeules, P., Grandbois, M., Bondarenko, V. A., Yamazaki, A. and Salesse, C. (2002) Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. Biophys. J. 82, 3343–3356.

    PubMed  CAS  Google Scholar 

  48. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular Biology of the Cell, 4th Ed. Garland Science, New York, p. 1113.

    Google Scholar 

  49. Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E. (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53.

    Article  PubMed  CAS  Google Scholar 

  50. Dettmann, W., Grandbois, M., Andre, S., Benoit, M., Wehle, A. K., Kaltner, H., et al. (2000) Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Arch. Biochem. Biophys. 383, 157–170.

    Article  PubMed  CAS  Google Scholar 

  51. Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002) Crystal structure of the extracellular segment of integrin alphaV beta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155.

    Article  PubMed  CAS  Google Scholar 

  52. Buck, C. A. and Horwitz, A. F. (1987) Cell surface receptors for extracellular matrix molecules. Annu. Rev. Cell. Biol. 3, 179–205.

    Article  PubMed  CAS  Google Scholar 

  53. Meinecke, R. and Meyer, B. (2001) Determination of the binding specificity of an integral membrane protein by saturation transfer difference NMR: RGD peptide ligands binding to integrin alphaII beta3. J. Med. Chem. 44, 3059–3065.

    Article  PubMed  CAS  Google Scholar 

  54. Geiger, B. and Bershadsky, A. (2002) Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110, 139–142.

    Article  PubMed  CAS  Google Scholar 

  55. Johansson, S., Svineng, G., Wennerberg, K., Armulik, A., and Lohikangas, L. (1997) Fibronectin-integrin interactions. Front. Biosci. 2, d126-d146.

    PubMed  CAS  Google Scholar 

  56. Dufrêne, Y. F., Barger, W. R., Green, J.-B. D., and Lee, G. U. (1997) Nanometer-scale surface properties of mixed phospholipid monolayers and bilayers. Langmuir 13, 4779–4784.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Ikai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afrin, R., Arakawa, H., Osada, T. et al. Extraction of membrane proteins from a living cell surface using the atomic force microscope and covalent crosslinkers. Cell Biochem Biophys 39, 101–117 (2003). https://doi.org/10.1385/CBB:39:2:101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:2:101

Index Entries

Navigation