Skip to main content
Log in

Transient, highly populated, building blocks folding model

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Protein folding is a hierarchical event, in which transiently formed local structural elements assemble to yield the native conformation. In principle, multiple paths glide down the energy landscape, but, in practice, only a few of the paths are highly traveled. Here, the literature is reviewed in this light, and, particularly, a hierarchical, building block protein-folding model is presented, putting it in the context of a broad range of experimental and theoretical results published over the past few years. The model is based on two premises: First, although the local building block elements may be unstable, they nevertheless have higher population times than all alternate conformations; and, second, protein folding progresses through a combinatorial assembly of these elements. Through the binding of the most favorable building block conformers, there is a redistribution of the conformers in solution, propagating the protein-folding reaction. We describe the algorithm, and illustrate its usefulness, then we focus on its utility in assigning simple vs complex folding pathways, on chaperonin-assisted folding, on its relevance to domain-swapping processes, and on its relevance and relationship to disconnectivity graphs and tree diagrams. Considering protein folding as initiating from local transient structural elements is consistent with available experimental and theoretical results. Here, we have shown that, early in the folding process, sequential interactions are likely to take place, even if the final native fold is a complex, nonsequential one. Such a route is favorable kinetically and entropically. Through the construction of anatomy trees, the model enables derivation of the major folding pathways and their bumps, and qualitatively explains the kinetics of protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryngelson, J. D. and Wolynes, P. G. (1989) Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem 93, 6902–6915.

    Article  CAS  Google Scholar 

  2. Karplus, M. and Shakhnovitch, E. I. (1992) Protein folding: theoretical studies of thermodynamics and dynamics, in Protein Folding (Creighton, T., ed.), W. H. Freeman & Sons, New York, pp. 127–195.

    Google Scholar 

  3. Baldwin, R. L. (1994) Matching speed and stability. Nature 369, 183–184.

    Article  PubMed  CAS  Google Scholar 

  4. Baldwin, R. L. (1995) The nature of protein folding pathways: the classical versus the new view. J. Biomol. NMR 5, 103–109.

    Article  PubMed  CAS  Google Scholar 

  5. Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., Thomas, P. D., and Chan, H. S. (1995) Principles of protein folding: a perspective from simple exact models. Protein Sci. 4, 561–602.

    Article  PubMed  CAS  Google Scholar 

  6. Karplus, M., Sali, A., and Shakhnovitch, E. (1995) Comment: kinetics of protein folding. Nature 373, 664–665.

    Article  Google Scholar 

  7. Wolynes, P. G., Onuchic, J. N., and Thirumalai, D. (1995) Navigating the folding routes. Science 267, 1619–1620.

    Article  PubMed  CAS  Google Scholar 

  8. Onuchic, J. N., Wolynes, P. G., Luthey-Schulten, Z., and Socci, N. D. (1995) Towards an outline of the topography of a realistic protein folding funnel. Proc. Natl. Acad. Sci. USA 92, 3626–3630.

    Article  PubMed  CAS  Google Scholar 

  9. Karplus, M. (1997) The Levinthal paradox: yesterday and today. Folding Design 2, S69-S75.

    Article  PubMed  CAS  Google Scholar 

  10. Dill K. A. and Chan, H. S. (1997) From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19.

    Article  PubMed  CAS  Google Scholar 

  11. Lazaridis, T. and Karplus, M. (1997) “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931.

    Article  PubMed  CAS  Google Scholar 

  12. Frauenfelder, H. and Leeson, D. T. (1998) The energy landscape in non-biological molecules. Nat. Struct. Biol. 5, 757–759.

    Article  PubMed  CAS  Google Scholar 

  13. Wu, L. C., Grandori, R., and Carey, J. (1994) Autonomous subdomains in protein folding. Protein Sci. 3, 359–371.

    Google Scholar 

  14. Tsai, C.-J. and Nussinov, R. (1997) Hydrophobic folding units derived from dissimilar monomer structures and their interactions. Protein Sci. 6, 24–42.

    Article  PubMed  CAS  Google Scholar 

  15. Tsai, C. J. and Nussinov, R. (1997) Hydrophobic folding units at protein-protein interfaces: implications to protein folding and protein-protein association. Protein Sci. 6, 1426–1437.

    PubMed  CAS  Google Scholar 

  16. Tsai, C.-J., Xu, D., and Nussinov, R. (1998) Protein folding via binding, and vice versa. Folding Design 3, R71-R80.

    Article  PubMed  CAS  Google Scholar 

  17. Dill, K. A. (1990) Dominant forces in protein folding. Biochemistry 31, 7134–7155.

    Google Scholar 

  18. Xu, D., Tsai, C. J., and Nussinov, R. (1997) Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng. 10, 999–1012.

    Article  PubMed  CAS  Google Scholar 

  19. Baldwin, R. L. and Rose, G. D. (1999) Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem. Sci., 24, 26–33.

    Article  PubMed  CAS  Google Scholar 

  20. Baldwin, R. L. and Rose, G. D. (1999) Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci. 24, 77–84.

    Article  PubMed  CAS  Google Scholar 

  21. Tsai, C. J., Kumar, S., Ma, B., and Nussinov, R. (1999) Folding funnels, binding funnels and protein function. Protein Sci. 8, 1181–1190.

    PubMed  CAS  Google Scholar 

  22. Plaxco, K. W., Simons, K. T., and Baker, D. (1998) Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994.

    Article  PubMed  CAS  Google Scholar 

  23. Bozko, E. M. and Brooks, C. L., III (1995) First principles calculation of the folding free energy for a three helix bundle protein. Science 269, 393–396.

    Article  Google Scholar 

  24. Kim, P. S. and Baldwin, R. L. (1990) Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660.

    Article  PubMed  CAS  Google Scholar 

  25. Bai, Y., Sosnick, T. R., Mayne, L., and Englander, S. W. (1995) Protein folding intermediates: native-state hydrogen exchange. Science 269, 145–151.

    Article  Google Scholar 

  26. Tsai, C. J., Maizel, J. V., and Nussinov, R. (1999) Distinguishing between sequential and nonsequentially folded proteins: implications for folding and misfolding. Protein Sci. 7, 73–87.

    Google Scholar 

  27. Dobson, C. M. and Karplus, M. (1999) The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol. 9, 92–101.

    Article  PubMed  CAS  Google Scholar 

  28. Govindarajan, S. and Goldstein, R. A. (1995) Optimal local propensities for model proteins. Proteins 95, 415–418.

    Google Scholar 

  29. Fersht, A. R. (1995) Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10,896–10,873.

    Article  Google Scholar 

  30. Abkevitch, V. I., Gutin, A. M., and Shakhnovitch, E. I. (1995) Impact of local and non-local interactions on the thermodynamics and kinetics of protein folding. J. Mol. Biol. 252, 460–471.

    Article  Google Scholar 

  31. Ptitsyn, O. B. (1998) Protein folding and protein evolution: common folding nucleus in different subfamilies of c-type cytochromes. J. Mol. Biol. 278, 655–666.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, Y. and Shortle, D. (1996) A dynamic bundle of four adjacent hydrophobic segments in the denatured state of staphylococcal nuclease. Protein Sci. 5, 1898–1906.

    PubMed  CAS  Google Scholar 

  33. Kuhlman, B., Yang, H. Y., Boice, J. A., Fairman, R., and Raleigh, D. P. (1997) An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability. J. Mol. Biol. 270, 640–647.

    Article  PubMed  CAS  Google Scholar 

  34. Ramirez-Alvardo, M., Daragam, V. A., Serrano, L., and Mayo, K. H. (1998) Motional dynamics of residues in a β-hairpin peptide measured by 13C-NMR relaxation. Protein Sci. 7, 720–729.

    Article  Google Scholar 

  35. Munioz, V., Thompson, P. A., Hofrichter, J., and Eaton, W. A. (1997) Folding dynamics and mechanism of β-turn formation. Nature 390, 196–199.

    Article  Google Scholar 

  36. Alba, E. D., Jimenez, M. A., Rico, M., and Nieto, J. L. (1995) Conformational investigation of designed short linear peptides able to fold into β-hairpin structures in aqueous solution. Folding Design 1, 133–144.

    Article  Google Scholar 

  37. Briggs, M. S. and Roder, H. (1992) Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc. Natl. Acad. Sci. USA 89, 2017–2021.

    Article  PubMed  CAS  Google Scholar 

  38. Lu, J. and Dahlquist, F. W. (1992) Detection and characterization of an early folding intermediate of T4 lysozyme using pulsed hydrogenexchange and two-dimensional NMR. Biochemistry 31, 4749–4756.

    Article  PubMed  CAS  Google Scholar 

  39. Dyson, H. J., Merutka, G., Waltho, J. P., Lerner, R. A., and Wright, P. E. (1992) Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding I. Myohemerythrin. J. Mol. Biol. 226 795–817.

    Article  PubMed  CAS  Google Scholar 

  40. Waltho, J. P., Feher, V. A., Merutka, G., Dyson, H. J., and Wright, P. E. (1993) Peptide models of protein folding initiation sites. 1. Secondary struture formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry 32, 6337–6347.

    Article  PubMed  CAS  Google Scholar 

  41. Shin, J. C., Merutka, G., Waltho, J. P., Tennant, L. L., Dyson, H. J., and Wright, P. E. (1993) Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin. Biochemistry 32, 6356–6364.

    Article  PubMed  CAS  Google Scholar 

  42. Richards, F. M. and Kundrot, C. E. (1988) Identification of structural motifs from protien coordinate data: secondary structure and firstlevel supersecondary structure. Proteins 3, 71–84.

    Article  PubMed  CAS  Google Scholar 

  43. Sun, Z. and Jiang, B. (1996) Patterns and confor mations of commonly occurring supersecondary structures (basic motifs) in protein data bank. J. Protein. Chem. 15, 675–690.

    Article  PubMed  CAS  Google Scholar 

  44. Boutonnet, N. S., Kajava, A. V., and Rooman, M. J. (1998) Structural classification of αββ and ββα supersecondary structure units in proteins. Proteins 30, 193–212.

    Article  PubMed  CAS  Google Scholar 

  45. Karplus, M. and Weaver, D. L. (1994) Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 3, 650–668.

    Article  PubMed  CAS  Google Scholar 

  46. Panchenko A. R., Luthey-Schulten, Z., and Wolynes, P. G. (1996) Foldons, protein structural modules, and exons. Proc. Natl. Acad. Sci. USA 93, 2008–2013.

    Article  PubMed  CAS  Google Scholar 

  47. Panchenko, A. R., Luthey-Schulten, Z., Cole, R., and Wolynes, P. G. (1997) The foldon universe: a survey of structural similarity and self-recognition of independently folding units. J. Mol. Biol. 272, 95–105.

    Article  PubMed  CAS  Google Scholar 

  48. Zehfus, M. H. and Rose, G. D (1986) Compact units in proteins. Biochemistry 25, 5759–5765.

    Article  PubMed  CAS  Google Scholar 

  49. Zehfus, M. H. (1993) Improved calculations of compactness and a reevaluation of continuous compact units. Proteins 16, 293–300.

    Article  PubMed  CAS  Google Scholar 

  50. Itzhaki, L. S., Otzen, D. E., and Fersht, A. R. (1995) The structure of the transition state for folding of chymotrypsin inhibitor 2 analyzed by protein engineering methods: evidence for a nucleation condensation mechanism for protein folding. J. Mol. Biol. 254, 260–288.

    Article  PubMed  CAS  Google Scholar 

  51. Srinivasan, R. and Rose, G. D. (1995) LINUS: a hierarchic procedure to predict the fold of a protein. Proteins 22, 81–99.

    Article  PubMed  CAS  Google Scholar 

  52. Hamada, D., Segawa, S.-I., and Goto, Y. (1996) Non-native α-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein. Nat. Struct. Biol. 3, 869–873.

    Article  Google Scholar 

  53. de Alba, E., Jimenez, M. A., Rico, M., and Nieto J. L. (1996) Conformational investigation of designed short linear peptides able to fold into β-hairpin structures in aqueous solution. Folding Design 1, 133–144.

    Article  PubMed  Google Scholar 

  54. de Alba, E., Rico, M., and Jimenez, M. A. (1997) Cross-strand side-chanin interactions versus turm conformation in β-hairpins. Protein Sci. 6, 2548–2560.

    PubMed  Google Scholar 

  55. Ramirez-Alvardo, M., Blanco, F. J., and Serrano, L. (1996) De nove design and structural analysis of a model β-hairpin peptide system. Nature Struct. Biol. 3, 604–612.

    Article  Google Scholar 

  56. Sinha, N., Tsai, C. J., and Nussinov, R. (2001) A proposed structural mode 1 for amyloid fibril elongation: domain swapping forms an interdigitating β-structure polymer. Protein Eng. 14 93–103.

    Article  PubMed  CAS  Google Scholar 

  57. Dill, K. A., Fiebig, K. M., and Chan, H. S. (1993) Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 90, 1942–1946.

    Article  PubMed  CAS  Google Scholar 

  58. Gutin, A. M., Abkvitch, V. I., and Shakhnovitch, E. I. (1996) Chain length scaling of protein folding time. Phys. Rev. Lett. 77, 5433–5436.

    Article  PubMed  CAS  Google Scholar 

  59. Wolynes, P. G., Luthey-Schulten, Z. A., and Onuchic, J. N. (1996) Fast-folding experiments and the topography of protein folding energy landscpes. Chem. Biol. 3, 425–432.

    Article  PubMed  CAS  Google Scholar 

  60. Eaton, W. A., Munoz, V., Thompson, P. A., Chan, C. K., and Hofrichter, J. (1997) Submillisecond kinetics of protein folding. Curr. Opin. Struct. Biol. 7, 10–14.

    Article  PubMed  CAS  Google Scholar 

  61. Mayne, L., Englander, S. W., et al. (1996) Molecular collapse: the rate-limiting step in two-state cytochrome c folding proteins. Proteins 24, 413–426.

    Article  PubMed  Google Scholar 

  62. Martinez, J. C., Pisabarro, M. T., and Serrano, L. (1998) Obligatory steps in protein folding and the conformational diversity of the transition state. Nat. Struct. Biol. 5, 721–729.

    Article  PubMed  CAS  Google Scholar 

  63. Grantcharova, V. P., Riddle, D. S., Santiago, J. V., and Baker, D. (1998) Important role of hydrogen bonds in the structurally polarized transition state for folding of the scr SH3 domain. Nat Struct. Biol. 5, 714–720.

    Article  PubMed  CAS  Google Scholar 

  64. Onuchic, J. N., Socci, N. D., Luthey-Schulten, Z., and Wolynes, P. G. (1996) Protein folding funnels: the nature of the transition state ensemble. Folding Design 1, 441–450.

    Article  PubMed  CAS  Google Scholar 

  65. Gruebele, M. and Wolynes, P. (1998) Satisfying turns in folding transitions. Nat. Struct. Biol 5, 662–665.

    Article  PubMed  CAS  Google Scholar 

  66. Capaldi, A. P., Ferguson, S. J., and Radford, S. E. (1999) The Greek key protein apo-pseudoazurin folds through an obligate on-pathway intermediate. J. Mol. Biol. 286, 1621–1632.

    Article  PubMed  CAS  Google Scholar 

  67. Pedersen, J. T. and Moult, J. (1997) Protein folding simulations with genetic algorithms and a detailed molecular description. J. Mol. Biol. 269, 240–259.

    Article  PubMed  CAS  Google Scholar 

  68. Bystroff, C. and Baker, D. (1998) Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281, 565–577.

    Article  PubMed  CAS  Google Scholar 

  69. Netzer, W. J. and Hartl, F. U. (1997) Recombination of protein domains facilitated by co-translational folding in eukarotes. Nature 388, 343–349.

    Article  PubMed  CAS  Google Scholar 

  70. Netzer, W. J. and Hartl, F. U. (1998) Protein folding in the cytosol: chaperonin-dependent and-independent mechanisms. Trends Biochem. Sci. 23, 68–73.

    Article  PubMed  CAS  Google Scholar 

  71. Hardesty, B., Tsalkova, T., and Kramer, G. (1999) Co-translational folding. Curr. Opin. Struct. Biol. 9, 111–114.

    Article  PubMed  CAS  Google Scholar 

  72. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) The protein databank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    Article  PubMed  CAS  Google Scholar 

  73. Houry, W. A., Frishman, D, Eckerson, C., Lottspeich, F., and Hartl, F. U. (1999). Identification of in vivo substrates of the chaperonin GroEl. Nature 402, 147–154.

    Article  PubMed  CAS  Google Scholar 

  74. Vellieux, F. M. D., Hajdu, J., Verlinde, L. M. J., Groendijk, H., Read, R. J., Greenhough, T. J., Campbell, J. W., Kalk, K. H., Littlechild, J. A., Watson, H. C., and Hol, W. G. J. (1993) Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data. Proc. Natl. Acad. Sci. USA 90, 2355–2359.

    Article  PubMed  CAS  Google Scholar 

  75. Ellis, R. J. (1998) Steric chaperones. Trends Biochem. Sci. 23, 43–45.

    Article  PubMed  CAS  Google Scholar 

  76. Bennett, M. J., Choe, S., and Eisenberg, D. (1994) Domain swapping: entangling alliances between proteins. Proc. Nat. Acad. Sci. USA 91, 3127–3131.

    Article  PubMed  CAS  Google Scholar 

  77. Bennett, M. J., Schlunegger, M. P., and Eisenberg, D. (1995) 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4, 2455–2468.

    PubMed  CAS  Google Scholar 

  78. Zegers, I., Deswarte, J., and Wyns, L. (1999) Trimeric domain-swapped barnase. Proc. Natl. Acad. Sci. USA 96, 818–822.

    Article  PubMed  CAS  Google Scholar 

  79. Piccoli, R., Tamburrini, M., Piccialli, G., Di Donato, A., Parente, A., and D'Alessio, G. (1992) The dual-mode quarternari structure of seminal rnase. Proc. Natl. Acad. Sci. USA 89, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  80. D'Alessio, G. (1995) Oligomer evolution in action. Nat. Struct. Biol. 2, 11–13.

    Article  PubMed  Google Scholar 

  81. Becker, O. M. and Karplus, M. (1997) The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495–1517.

    Article  CAS  Google Scholar 

  82. Hansmann, U. H. E., Okamoto, Y., and Onuchic, J. N. (1999) The folding funnel landscape for the peptide met-enkephalin. Proteins 34, 472–483.

    Article  PubMed  CAS  Google Scholar 

  83. Rothwarf, D. M. and Scheraga, H. A. (1996) Role of non-native aromatic and hydrophobic interactions in the folding of hen egg white lysozyme. Biochemistry 35, 13,797–13,807.

    Article  CAS  Google Scholar 

  84. Baker, D. and Agard, D. A. (1994) Kinetics versus thermodynamics in protein folding. Biochemistry 33, 7505–7509.

    Article  PubMed  CAS  Google Scholar 

  85. Shinde, U. P., Liu, J. J., and Inoye, M. (1997) Protein memory through altered folding mediated by intramolecular chaperones. Nature 389, 520–522.

    Article  PubMed  CAS  Google Scholar 

  86. Dill, K. A. (1999) Polymer principles and protein folding. Protein Sci. 8, 1166–1180.

    Article  PubMed  CAS  Google Scholar 

  87. Chan, H. S. and Dill, K. A. (1994) Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys. 100, 9238–9257.

    Article  Google Scholar 

  88. Chan, H. S. and Dill, K. A. (1998) Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins 30, 2–33.

    Article  PubMed  CAS  Google Scholar 

  89. Dill, K. A., Phillips, A. T., and Rosen, J. B. (1997) Protein structure and energy landscape dependence on sequence using a continuous energy function. J. Comp. Biol. 4, 227–239.

    CAS  Google Scholar 

  90. Wales, D. J., Miller, M. A., and Walsh, T. R. (1998) Archetypal energy landscapes. Nature 394, 758–760.

    Article  CAS  Google Scholar 

  91. Miller, M. A., Doye, J. P. K., and Wales, D. J. (1999) Structural relaxation in morse clusters: energy landscapes. J. Chem. Phys. 110, 328–334.

    Article  CAS  Google Scholar 

  92. Miller, M. A. and Wales, D. J. (1999) Energy landscape of a model protein. J. Chem. Phys. 111, 6610–6616.

    Article  CAS  Google Scholar 

  93. Lesk, A. M. and Rose, G. D. (1981) Folding unit in globular proteins. Proc. Natl. Acad. Sci. USA 78, 4304–4308.

    Article  PubMed  CAS  Google Scholar 

  94. Wodak, S. J. and Janin, J. (1981) Location of structural domains in proteins. Biochemistry 20, 6544–6552.

    Article  PubMed  CAS  Google Scholar 

  95. Tsai, C. J., Maizel, J. V., and Nussinov, R. (2000) Anatomy of protein structures: visualizing how a 1-D protein chain folds into a 3-D shape. Proc. Natl. Acad. Sci. USA, in press.

  96. Sham, Y. Y., Ma, B., Tsai, C. J., and Nussinov, R. (2000) Molecular dynamics simulation of Escherichia coli dihydrofolate reductase and its protein fragments: relative stabilities in experiment and simulations. Submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Nussinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CJ., Nussinov, R. Transient, highly populated, building blocks folding model. Cell Biochem Biophys 34, 209–235 (2001). https://doi.org/10.1385/CBB:34:2:209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:34:2:209

Index Entries

Navigation