Skip to main content
Log in

Nonnative intermediate state of acid-stable β-sheet protein

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cell adhesion molecule, CD2, from the immunoglobulin superfamily, is comprised of antibodies and Ig-like domains and plays a fundamental role, not only in the immune system, but also in the interactions between cells, specifically in cell-cell adhesion. This study examines the N-terminal domain 1 of CD2 (CD2-1) at different pHs, and in 2,2,2-trifluoroethanol (TFE), using nears- and far-UV circular dichroism (CD), fluorescence, and 1H nuclear magnetic resonance to elucidate factors contributing to the Ig β-structure. Contrary to the complete unfolding induced by guanidinehydrochloride, CD2-1 retains its native tertiary structure at pHs from 1.0 to 10.0. Like the effects of high temperatures that have previously been observed, TFE reduces the integrity of the tertiary structure, while reorganizing the secondary structure from a native all-β-sheet to a significantly α-helical conformation. The induced helicity of CD2-1 correlates with the helicity inherent in its primary sequence. Our results suggest that electrostatic interactions are less important for the formation of the native secondary and tertiary structure of CD2-1, although they are crucial for CD2’s adhesion function. Interference with the protein’s hydrophobic interactions and hydrogen-bonding networks, however, causes significant changes in its conformation. Residues of CD2-1, with high conformational flexibility, may contribute for the formation of a metastable dimer by domain-swapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J. H., Smolyar, A., Tan, K., Liu, J. H., Kim, M., Sun, Z. Y., Wagner, G., and Reinherz, E. L. (1999) Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 97, 791–803.

    Article  PubMed  CAS  Google Scholar 

  2. Li, J., Smolyar, A., Sunder-Plassmann, R., and Reinherz, E. L. (1996) Ligand-induced conformational change within the CD2 ectodomain accompanies receptor clustering: implication for molecular lattice formation. J. Mol. Biol. 263, 209–226.

    Article  PubMed  CAS  Google Scholar 

  3. Wyss, D. F., Dayie, K. T., and Wagner, G. (1997) The Counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with millisecond to microsecond motions. Protein Sci. 6, 534–542.

    PubMed  CAS  Google Scholar 

  4. Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M., Smith-Gill, S. J., Air, G., Sheriff, S., Padlan, E. A., Davies, D., Tulip, W. R., et al. (1989) Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883.

    Article  PubMed  CAS  Google Scholar 

  5. Al-Lazikani, B., Lesk, A. M., and Chothia, C. (1997) Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 273, 927–948.

    Article  PubMed  CAS  Google Scholar 

  6. Wu, T. T. and Kabat, E. A. (1970) An Analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211–250.

    Article  PubMed  CAS  Google Scholar 

  7. McAlister, M. S., Mott, H. R., van der Merwe, P. A., Campbell, I. D., Davis, S. J., and Driscoll, P. C. (1996) NMR analysis of interacting soluble forms of the cell-cell recognition molecules CD2 and CD48. Biochemistry 35, 5982–5991.

    Article  PubMed  CAS  Google Scholar 

  8. Shapiro, L., Fannon, A. M., Kwong, P. D., Thompson, A., Lehmann, M., Grubel, S. G., Legrand, J. F., Als-Nielsen, J., Colman, D. R., and Hendrickson, W. A. (1995) Structural basis of cell-cell adhesion by cadherins. Nature 374, 327–337.

    Article  PubMed  CAS  Google Scholar 

  9. Smith, D. K., and Xue, H. (1997) Sequence profiles of immunoglobulin and immunoglobulin-like domains. J. Mol. Biol. 274, 530–545.

    Article  PubMed  CAS  Google Scholar 

  10. Erickson, H. P. (1994) Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc. Natl. Acad. Sci. USA 91, 10,114–10,118.

    Article  CAS  Google Scholar 

  11. Koide, A., Bailey, C. W., Huang, X., and Koide, S. (1998) The Fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151.

    Article  PubMed  CAS  Google Scholar 

  12. Plaxco, K. W., Spitzfaden, C., Campbell, I. D., and Dobson, C. M. (1997) A Comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. J. Mol. Biol. 270, 763–770.

    Article  PubMed  CAS  Google Scholar 

  13. Bodian, D. L., Jones, E. Y., Harlos, K., Stuart, D. I., and Davis, S. J. (1994) Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 Å resolution. Structure 2, 755–766.

    Article  PubMed  CAS  Google Scholar 

  14. Wyss, D. F., Choi, J. S., Li, J., Knoppers, M. H., Willis, K. J., Arulanandam, A. R., Smolyar, A., Reinherz, E. L., and Wagner, G. (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269, 1273–1278.

    Article  PubMed  CAS  Google Scholar 

  15. Davis, S. J., Davies, E. A., and van der Merwe, P. A. (1995) Mutational analysis of the epitopes recognized by anti-(rat CD2) and anti-(rat CD48) monoclonal antibodies. Biochem. Soc. Trans. 23, 188–194.

    PubMed  CAS  Google Scholar 

  16. Recny, M. A., Neidhardt, E. A., Sayre, P. H., Ciardelli, T. L., and Reinherz, E. L. (1990) Structural and functional characterization of the CD2 immunoadhesion domain. Evidence for inclusion of CD2 in an alpha-beta protein folding class. J. Biol. Chem. 265, 8542–8549.

    PubMed  CAS  Google Scholar 

  17. Driscoll, P. C., Cyster, J. G., Campbell, I. D., and Williams, A. F. (1991) Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature 353, 762–765.

    Article  PubMed  CAS  Google Scholar 

  18. Davis, S. J. and van der Merge, P. A. (1996) The Structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187.

    Article  PubMed  CAS  Google Scholar 

  19. Jones, E. Y., Davis, S. J., Williams, A. F., Harlos, K., and Stuart, D. I. (1992) Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232–239.

    Article  PubMed  CAS  Google Scholar 

  20. Meuer, S. C., Hussey, R. E., Fabbi, M., Fox, D., Acuto, O., Fitzgerald, K. A., Hodgdon, J. C., Protentis, J. P., Schlossman, S. F., and Reinherz, E. L. (1984) An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell 36, 897–906.

    Article  PubMed  CAS  Google Scholar 

  21. Rouleau, M., Bernard, A., Lantz, O., Vernant, J. P., Charpentier, B., and Senik, A. (1993) Apoptosis of activated CD8+/CD57+ T cells is induced by some combinations of anti-CD2 mAb. J. Immunol. 151, 3547–3556.

    PubMed  CAS  Google Scholar 

  22. Murray, A. J., Lewis, S. J., Barclay, A. N., and Brady, R. L. (1995) One sequence, two folds: a metastable structure of CD2. Proc. Natl. Acad. Sci. USA 92, 7337–7341.

    Article  PubMed  CAS  Google Scholar 

  23. Murray, A. J., Head, J. G., Barker, J. J., and Brady, R. L. (1998) Engineering an intertwined form of CD2 for stability and assembly. Nat. Struct. Biol. 5, 778–782.

    Article  PubMed  CAS  Google Scholar 

  24. Hayes, M. V., Sessions, R. B., Brady, R. L., and Clarke, A. R. (1999) Engineered assembly of intertwined oligomers of an immunoglobulin chain. J. Mol. Biol. 285, 1857–1867.

    Article  PubMed  CAS  Google Scholar 

  25. Parker, M. J., Dempsey, C. E., Hosszu, L. L., Waltho, J. P., and Clarke, A. R. (1998) Topology, sequence evolution and folding dynamics of an immunoglobulin domain. Nat. Struct. Biol. 5, 194–198.

    Article  PubMed  CAS  Google Scholar 

  26. Yang, J. J., Yang, H., Ye, Y., Hopkins, H., and Hastings, G. Formation of a non-native intermediate of an all beta-sheet protein: domain 1 of CD2. Protein Science, submitted

  27. Bychkova, V. E. and Ptitsyn, O. B. (1993) The molten globule in vitro and in vivo. Chemtracts Biochem. Mol. Biol. 4, 133–163.

    CAS  Google Scholar 

  28. Ptitsyn, O. B., Bychkova, V. E., and Uversky, V. N. (1995) Kinetic and equilibrium folding intermediates. Philos. Trans. R. Soc. Lond B Biol. Sci. 348, 35–41.

    Article  PubMed  CAS  Google Scholar 

  29. Landau, L. D. and Lifshits, E. M. (1982) Theoretical physics. Electrodynamics Continuous Media 8, 60.

    Google Scholar 

  30. Uversky, V. N., Narizhneva, N. V., Kirschstein, S. O., Winter, S., and Lober, G. (1997) Conformational transitions provoked by organic solvents in beta- lactoglobulin: Can a molten globule like intermediate be induced by the decrease in dielectric constant? Fold Des. 2, 163–172.

    Article  PubMed  CAS  Google Scholar 

  31. Buck, M. (1998) Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 3, 297–355.

    Article  Google Scholar 

  32. Zhong, L. and Johnson, W. C., Jr. (1992) Environment affects amino acid preference for secondary structure. Proc. Natl. Acad. Sci. USA 89, 4462–4465.

    Article  PubMed  CAS  Google Scholar 

  33. Piotto, M., Saudek, V., and Sklenar, V. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665.

    Article  PubMed  CAS  Google Scholar 

  34. Kay, L. E. (1995) Field gradient techniques in NMR spectroscopy. Curr. Opin. Struct. Biol. 5, 674–681.

    Article  PubMed  CAS  Google Scholar 

  35. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids John Wiley, New York.

    Google Scholar 

  36. Woody, R. W. (1985) Circular dichroism of peptides. Peptides, 7, 15–114.

    CAS  Google Scholar 

  37. Yang, J. J., Buck, M., Pitkeathly, M., Kotik, M., Haynie, D. T., Dobson, C. M., and Radford, S. E. (1995) Conformational properties of four peptides spanning the sequence of hen. J. Mol. Biol. 252, 483–491.

    Article  PubMed  CAS  Google Scholar 

  38. Schwalbe, H., Fiebig, K. M., Buck, M., Jones, J. A., Grimshaw, S. B., Spencer, A., Glaser, S. J., Smith, L. J., and Dobson, C. M. (1997) Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry 36, 8977–8991.

    Article  PubMed  CAS  Google Scholar 

  39. Santoro, M. M. and Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068.

    Article  PubMed  CAS  Google Scholar 

  40. Tanford, C. (1968) Protein denaturation. Adv. Prot. Chem. 23, 121–282.

    CAS  Google Scholar 

  41. Fink, A. L., Calciano, L. J., Goto, Y., Kurotsu, T., and Palleros, D. R. (1994) Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry 33, 12,504–12,511.

    Article  CAS  Google Scholar 

  42. Lilie, H., Jaenicke, R., and Buchner, J. (1995) Characterization of a quaternary-structured folding intermediate of an antibody Fab-fragment. Protein Sci. 4, 917–924.

    PubMed  CAS  Google Scholar 

  43. Buchner, J., Renner, M., Lilie, H., Hinz, H. J., Jaenicke, R., Kiefhabel, T., and Rudolph, R. (1991) Alternatively folded states of an immunoglobulin. Biochemistry 30, 6922–6929.

    Article  PubMed  CAS  Google Scholar 

  44. Deutscher, S. L., Crider, M. E., Ringbauer, J. A., Komissarov, A. A., and Quinn, T. P. (1996) Stability studies of nucleic acid-binding Fab isolated from combinatorial bacteriophage display libraries. Arch. Biochem. Biophys. 333, 207–213.

    Article  PubMed  CAS  Google Scholar 

  45. Hendsch, Z. S. and Tidor, B. (1994) Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 3, 211–226.

    PubMed  CAS  Google Scholar 

  46. Sali, D., Bycroft, M., and Fersht, A. R. (1991) Surface electrostatic interactions contribute little to stability of barnase. J. Mol. Biol. 220, 779–788.

    Article  PubMed  CAS  Google Scholar 

  47. Bradley, E. K., Thomason, J. F., Cohen, F. E., Kosen, P. A., and Kuntz, I. D. (1990) Studies of synthetic helical peptides using circular dichromism and nuclear magnetic resonance. J. Mol. Biol. 215, 607–622.

    Article  PubMed  CAS  Google Scholar 

  48. Dill, K. A. (1990) Dominant forces in protein folding. Biochemistry 29, 7133–7155.

    Article  PubMed  CAS  Google Scholar 

  49. Ashikari, Y., Arata, Y., and Hamaguchi, K. (1985) pH-induced unfolding of the constant fragment of the immunoglobulin light chain: effect of reduction of the intrachain disulfide bond. J. Biochem. (Tokyo) 97, 517–528.

    CAS  Google Scholar 

  50. Davis, S. J., Davies, E. A., Tucknott, M. G., Jones, E. Y., and van der Merwe, P. A. (1998) The role of charged residues mediating low affinity protein-protein recognition at the cell surface by CD2. Proc. Natl. Acad. Sci. USA 95, 5490–5494.

    Article  PubMed  CAS  Google Scholar 

  51. Geourjon, C. and Deleage, G. (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11, 681–684.

    PubMed  CAS  Google Scholar 

  52. Garnier, J., Gibrat, J. F., and Robson, B. (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 266, 540–553.

    PubMed  CAS  Google Scholar 

  53. Rost, B., Sander, C., and Schneider, R. (1994) PHD—an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 10, 53–60.

    PubMed  CAS  Google Scholar 

  54. Yang, J. J., Pikeathly, M., and Radford, S. E. (1994) Far-UV circular dichroism reveals a conformational switch in a peptide fragment from the beta-sheet of hen lysozyme. Biochemistry 33, 7345–7353.

    Article  PubMed  CAS  Google Scholar 

  55. Narhi, L. O., Philo, J. S., Li, T., Zhang, M., Samal, B., and Arakawa, T. (1996) Induction of alpha-helix in the beta-sheet protein tumor necrosis factor-alpha: acid-induced denaturation. Biochemistry 35, 11,454–11,460.

    CAS  Google Scholar 

  56. Shiraki, K., Nishikawa, K., and Goto, Y. (1995) Trifluoroethanol-induced stabilization of α-helical structure of β-lactoglobulin: implication for non-hierarchical protein folding. J. Mol. Biol. 245, 180–194.

    Article  PubMed  CAS  Google Scholar 

  57. Eisenberg, M., Gresalfi, T., Riccio, T., and McLaughlin, S. (1979) Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry 18, 5213–5223.

    Article  PubMed  CAS  Google Scholar 

  58. Rajan, R., and Balaram, P. (1996) A model for the interaction of trifluoroethanol with peptides and proteins. Int. J. Pept. Protein. Res. 48, 328–336.

    PubMed  CAS  Google Scholar 

  59. Yang, J. J., van den Berg, B., Pitkeathly, M., Smith, L. J., Bolin, K. A., Keiderling, T. A., Redfield, C., Dobson, C. M., and Radford, S. E. (1996) Native-like secondary structure in a peptide from the alpha-domain of hen lysozyme. Fold Des. 1, 473–484.

    Article  PubMed  CAS  Google Scholar 

  60. Gast, K., Zirwer, D., Muller-Frohne, M., and Damaschun, G. (1999) Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between alpha-lactalbumin and ribonuclease A. Protein Sci. 8, 625–634.

    PubMed  CAS  Google Scholar 

  61. Dyson, H. J., Rance, M., Houghten, R. A., Wright, P. E., and Lerner, R. A. (1988) Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J. Mol. Biol. 201, 201–217.

    Article  PubMed  CAS  Google Scholar 

  62. Nelson, J. W. and Kallenbach, N. R. (1986) Stabilization of the ribonuclease S-peptide α-helix by trifluoroethanol. Proteins Struct. Funct. Genet 1, 211–217.

    Article  PubMed  CAS  Google Scholar 

  63. Segawa, S.-I., Fukuno, T., Fujiwara, K., and Noda, Y. (1991) Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments. Biopolymers 31, 497–509.

    Article  PubMed  CAS  Google Scholar 

  64. Buck, M., Radford, S. E., and Dobson, C. M. (1993) A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry 32, 669–678.

    Article  PubMed  CAS  Google Scholar 

  65. Thomas, P. D. and Dill, K. A. (1993) Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci. 2, 2050–2065.

    PubMed  CAS  Google Scholar 

  66. Luo, Y. and Baldwin, R. L. (1998) Trifluoroethanol stabilizes the pH 4 folding intermediate of sperm whale apomyoglobin. J. Mol. Biol. 279, 49–57.

    Article  PubMed  CAS  Google Scholar 

  67. Jasanoff, A. and Fersht, A. R. (1994) Quantitative determination of helical propensities from trifluoroethanol-titration curves. Biochemistry 33, 2129–2135.

    Article  PubMed  CAS  Google Scholar 

  68. Conio, G., Patrone, E., and Brighetti, S. (1970) The effect of aliphatic alcohols on the helix-coil transition of poly-L-ornithine and poly-L-glutamic acid. J. Biol. Chem. 245, 3335–3340.

    PubMed  CAS  Google Scholar 

  69. Cammers-Goodwin, A., Allen, T. J., Oslick, S. L., McClure, K. F., Lee, J. H., and Kemp, D. S. (1996) Mechanism of stabilization of helical conformations of polypeptides by water containing trifluoroethanol. J. Am. Chem. Soc. 118, 3082–2090.

    Article  CAS  Google Scholar 

  70. Walgers, R., Lee, T. C., and Cammers-Goodwin, A. (1998) An indirect chaotropic mechanism for the stabilization of helix conformation of peptides in aqueous trifluoroethanol and hexafluoro-2-propanol. J. Am. Chem. Soc. 120, 5073–5079.

    Article  CAS  Google Scholar 

  71. Hirota, N., Mizuno, K., and Goto, Y. (1998) Group additive contributions to the alcohol-induced alpha-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins. J. Mol. Biol. 275, 365–378.

    Article  PubMed  CAS  Google Scholar 

  72. Main, E. R. and Jackson, S. E. (1999) Does trifluoroethanol affect folding pathways and can it be used as a probe of structure in transition states? Nat. Struct. Biol. 6, 831–835.

    Article  PubMed  CAS  Google Scholar 

  73. Bodkin, M. J. and Goodfellow, J. M. (1996) Hydrophobic solvation in aqueous trifluoroethanol solution. Biopolymers 39, 43–50.

    Article  PubMed  CAS  Google Scholar 

  74. Brandts, J. F. and Hunt, L. (1967) The thermodynamics of protein denaturation. 3. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures. J. Am. Chem. Soc. 89, 4826–4838.

    Article  PubMed  CAS  Google Scholar 

  75. Schonbrunner, N., Wey, J., Engels, J., Georg, H., and Kiefhaber, T. (1996) Native-like beta-structure in a trifluoroethanol-induced partially folded state of the all-beta-sheet protein tendamistat. J. Mol. Biol. 260, 432–445.

    Article  PubMed  CAS  Google Scholar 

  76. Privalov, P. L. and Gill, S. J. (1989) The hydrophobic effect: a reappraisal. Pure Appl. Chem. 61, 1097–1104.

    CAS  Google Scholar 

  77. Lorch, M., Mason, J. M., Clarke, A. R., and Parker, M. J. (1999) Effects of core mutations on the folding of a beta-sheet protein: implications for backbone organization in the I-state. Biochemistry 38, 1377–1385.

    Article  PubMed  CAS  Google Scholar 

  78. Kuwata, K., Hoshino, M., Era, S., Batt, C. A., and Goto, Y. (1998) alpha→beta transition of beta-lactoglobulin as evidenced by heteronuclear NMR. J. Mol. Biol. 283, 731–739.

    Article  PubMed  CAS  Google Scholar 

  79. Hamada, D., Kuroda, Y., Tanaka, T., and Goto, Y. (1995) High helical propensity of the peptide fragments derived from beta- lactoglobulin, a predominantly beta-sheet protein. J. Mol. Biol. 254, 737–746.

    Article  PubMed  CAS  Google Scholar 

  80. Fan, P., Bracken, C., and Baum, J. (1993) Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for β-sheet to α-helix conversion. Biochemistry 32, 1573–1582.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny J. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.J., Carroll, A.R., Yang, W. et al. Nonnative intermediate state of acid-stable β-sheet protein. Cell Biochem Biophys 33, 253–273 (2000). https://doi.org/10.1385/CBB:33:3:253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:33:3:253

Index Entries