Skip to main content
Log in

Priming with magnesium-deficient media inhibits preadipocyte differentiation via potential upregulation of tumor necrosis factor-α

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of priming stromal-vascular cells in primary cultures with magnesium-deficient (MgD) media on preadipocyte differentiation was studied. Cultures were derived from dorsal subcutaneous fat tissue of young pigs and maintained 3 d in serum-free control or MgD Dulbecco’s modified Eagle’s medium, 3 d in 10% fetal bovine serum and dexamethasone, and 6 d in insulin. At d 12 of culture, immunocytochemical and glycerophosphate dehydrogenase assays indicated depressed adipocyte differentiation in the MgD groups. Cultures were enriched for preadipocytes up to 50% of total cells. On the third day of treatment with control and MgD medium, total cell lysates were isolated and 50 µg of them were run on two-dimensional gel electrophoresis. The separated proteins from both treatment groups showed similar patterns. However, spots of proteins with predicted molecular weight in the range of 25.8–37.4 kDa and pI of 5.39–5.85 were sixfold denser from the MgD 10 groups than from the controls. These proteins migrate similarly to tumor necrosis factor-α (TNF-α). The amount of TNF-α in cell lysates from the MgD group was about 2.35 times greater than controls determined by TNF-α-ELISA. It is likely that proteins upregulated by MgD medium are TNF-α isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. P. Barker, The fetal origins of adult diseases, Nutr. Today 31, 108–114 (1996).

    Article  Google Scholar 

  2. R. Valdez, M. A. Athens, G. H. Thompson, B. S. Bradshaw, and M. P. Stern, Birth and adult health outcomes in a biethnic population in the USA, Diabetologia 37, 624–631 (1994).

    PubMed  CAS  Google Scholar 

  3. E. R. McAnarney and S. C. Stevens, First, do no harm. Low birth weight and adolescent obesity, Am. J. Dis. Child. 147, 983–985 (1993).

    PubMed  CAS  Google Scholar 

  4. H. O. Lithell, P. M. McKeigue, L. Berglund, R. Mohsen, U. B. Lithell, and D. A. Leon, Relation of the size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years, Br. Med. J. 312, 406–410 (1996).

    CAS  Google Scholar 

  5. D. A. Leon, I. Koupilova, H. O. Lithell, L. Berglund, R. Mohsen, D. Vagero, et al., Failure to realize growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men, Br. Med. J. 312, 401–406 (1996).

    CAS  Google Scholar 

  6. M. P. Stern, Do non-insulin dependent diabetes mellitus and cardiovascular diseases share common antecedents?, Ann. Intern. Med. 124, 110–116 (1996).

    PubMed  CAS  Google Scholar 

  7. M. S. Seelig, Consequences of Mg deficiency on the enhancement of stress reactions; preventive and therapeutic implications (a review), J. Am. Coll. Nutr. 13, 429–446 (1994).

    PubMed  CAS  Google Scholar 

  8. L. Cordero and M. B. Landon, Infant of the diabetic mother, Clin. Perinatol. 20, 635–648 (1993).

    PubMed  CAS  Google Scholar 

  9. N. Weintrob, M. Karp, and M. Hod, Short- and long-range complications of offspring of diabetic mothers, J. Diabetes Complic. 10, 294–301 (1996).

    Article  CAS  Google Scholar 

  10. S. M. Husain and C. P. Sibley, Magnesium and pregnancy, Miner. Electrolyte Metab. 19, 296–307 (1993).

    PubMed  CAS  Google Scholar 

  11. N. L. Eibl, H. P. Kopp, H. R. Nowak, C. J. Schnack, P. G. Hopmeier, and G. Schernthaner, Hypomagnesemia in type II diabetes: effect of a 3-month replacement therapy, Diabetes Care 18, 188–192 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. L. Tosiello, Hypomagnesemia and diabetes mellitus. A review of clinical implications, Arch. Intern. Med. 156, 1143–1148 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. G. J., Hausman, J. T. Wright, R. Dean, and R. L. Richardson, Cellular and molecular aspects of the regulation of adipogenesis, J. Anim. Sci. 71, 33–55 (1993).

    CAS  Google Scholar 

  14. G. J. Hausman, The influence of insulin, triiodothyronine (T3) and insulin-like growth factor I (IGF-I) on the differentiation of preadipocytes in serum-free cultures of pig stromal vascular cells, J. Anim. Sci. 67, 3136–3143 (1989).

    PubMed  CAS  Google Scholar 

  15. G. J. Hausman, J. E. Novakofski, R. J. Martin, and G. B. Thomas, The development of adipocytes in primary stromal-vascular culture of fetal pig adipose tissue, Cell Tissue Res. 236, 459–464 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. Z. K. Yu and G. J. Hausman, Preadipocyte screening by laminin in porcine stromal vascular cell cultures, Obes. Res. 6, 299–306 (1998).

    PubMed  CAS  Google Scholar 

  17. T. J. Wright and G. J. Hausman, Monoclonal antibodies against cell surface antigen expression during porcine adipocyte differentiation, Int. J. Obes. 14, 395–409 (1990).

    PubMed  CAS  Google Scholar 

  18. J. T. Wright and G. J. Hausman, Adipose tissue development in the fetal pig examined using monoclonal antibodies, J. Anim. Sci. 68, 1170–1175 (1990).

    PubMed  CAS  Google Scholar 

  19. G. H. Hausman, Techniques for studying adipocytes, Stain Technol. 56, 149–154 (1981).

    PubMed  CAS  Google Scholar 

  20. T. G. Ramsay, G. J. Hausman, and R. J. Martin, Pre-adipocyte proliferation and differentiation in response to hormone supplementation of decapitated fetal pig sera, J. Anim. Sci. 64, 735–744 (1987).

    PubMed  CAS  Google Scholar 

  21. A. D. Watts, N. H. Hunt, B. D. Hambly, and G. Chaudhri, Separation of tumor necrosis factor a isoforms by two-dimansional polyacrylamide gel electrophoresis, Electrophoresis 18, 1086–1091 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. D. H. I. Chou, W. Lee, and G. McCulloch, TNFα inactivation of collagen receptors, J. Immunol. 156, 4354–4362 (1996).

    PubMed  CAS  Google Scholar 

  23. S. Dedhar and G. E. Hannigan, Integrin cytoplasmic interactions and bidirectional transmembranesignaling, Curr. Opin. Cell Biol. 8, 657–669 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. D. E. Jewel, D. D. Jones, R. J. Martin, A. Prestwood, and G. J. Hausman, Sera from pigs infected with SARCOCYSTIS SULCANIS and cachectin decrease preadipocyte differentiation in primary cell culture, J. Anim. Sci. 66, 2992–2999 (1988).

    Google Scholar 

  25. J. T. Wright, Flow cytometric analysis of porcine preadipocytes, J. Cell Biochem. 48, 385–392 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. F. M. Torti, B. Dieckmann, B. Beutler, A., Cerami, and G. M. Ringold, A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia, Science 229, 867–869 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. W. Doerrler, K. R. Feingold, and C. Grunfeld, Cytokines induce catabolic effects in cultured adipocytes by multiple mechanisms, Cytokine 6, 478–484 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. K. R. Feingold, M. Marshall, R. Gulli, A. H. Moser, and C. Grunfeld, Effect of endotoxin and cytokines in lipoprotein lipase activity in mice, Arterioscler. Thromb. 14, 866–1872 (1994).

    Google Scholar 

  29. C. L. Morin, M. J. Pagliassotti, D. Windmiller, and R. H. Eckel, Tumor necrosis factor alpha eliminates binding of NF-Y and an octamer-binding protein to the lipoprotein lipase promoter in 3T3-L1 adipocytes, J. Clin. Invest. 95, 1684–1689 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. K. Park, M. E. Pape, and K. H. Kim, Sequences of acetyl CoA carboxylase promoter for tumor necrosis factor action, Mediat. Inflam. 2, 271–277 (1993).

    Article  CAS  Google Scholar 

  31. J. Ninomiyatsuji, F. M. Torti, and G. M. Ringold, Tumor necrosis factor induced c-myc expression in the absence of mitogenesis is associated with inhibition of adipocyte differentiation, Proc. Natl. Acad. Sci. USA 90, 9611–9615 (1993).

    Article  CAS  Google Scholar 

  32. J. M. Stephens and H. Pekala, Transcriptional epression of the C/EBP-alpha and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor alpha regulation is coordinate and independent of protein synthesis, J. Biol. Chem. 267, 13580–13584 (1992).

    PubMed  CAS  Google Scholar 

  33. P. M. Williams, D. J. Chang, U. Danesch, G. M. Ringold, and R. A. Heller, CCAAT enhancer binding protein expression is rapidly extinguished in TA1 adipocyte cells treated with tumor necrosis factor, Mol. Endocrinol. 6, 1135–1141 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. B. Zhang, J. Berger, E. Hu, D. Szalkowski, S. Whitecarrington, and B. M. Spiegelman, Negative regulation of peroxisome proliferator activated receptor gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor alpha, Mol. Endocrinol. 10, 1457–1466 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. H. Xing, J. P. Northrop, J. R. Grove, K. E. Kilpatrick, J. L. Su, and G. M. Ringold, TNF alpha-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPAR gamma without effect on Pref-1 expression, Endocrinology 138, 2776–2783 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. J.M. Stephens, R. F. Morrison, and P. F. Pilch, The expression and regulation of STATs during 3T3-L1 adipocyte differentiation, J. Biol. Chem. 271, 10441–10444 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. R. Feinstein, H. Kanety, M. Z. Papa, B. Lunenfeld, and A. Karasik, Tumor necrosis factor alpha suppresses insulin induced tyrosine phosphorylation of insulin receptor and its substrates, J. Biol. Chem. 268, 26,055–26,058 (1993).

    CAS  Google Scholar 

  38. L. S. Liu, M. Spelleken, K. Rohrig, H. Hauner, and J. Eckel, Tumor necrosis factor a acutely inhibits insulin signaling in human adipocytes, Diabetes 47, 515–522 (1998).

    Article  PubMed  CAS  Google Scholar 

  39. K. Paz, R. Hemi, D. Leroith, A. Karasik, E. Elhanani, H. Kanety, and Y. Zick, Elevated serine/threonine phosphorylation on IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation, J. Biol. Chem. 271, 13,018–13,022 (1997).

    Google Scholar 

  40. G. S. Hotamisligil and B. M. Spiegelman, Tumor necrosis factor alpha inhibits signaling from insulin receptor, Proc. Natl. Acad. Sci. USA 91, 4854–4858 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. M. Kellerer and H. U. Haring, Pathogenesis of insulin resistance—modulation of the insulin signal at receptor level, Diabetes Res. Clin. Pract. 28, S173-S177 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. J. M. Stephens, J. Lee, and F. Pilch, Tumor necrosis factor alpha induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT 4 expression without a loss of insulin, J. Biol. Chem. 272, 971–976 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. H. Hauner, T. Petruschke, M. Russ, K. Rohrig, and J. Eckel, Effects of tumor necrosis factor a (TNF-alpha) on glucose transport and lipid metabolism of newly differentiated human fat cells in cell culture, Diabetologia 38, 764–771 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. S. D. Long and H. Pekala, Lipid mediators ELF insulin resistance ceremide signaling downregulates GLUT 4 gene transcription in 3T3-L1 adipocytes, Biochem. J. 319, 179–184 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchoukalova, Y.D., Grider, A., Mouat, M.F. et al. Priming with magnesium-deficient media inhibits preadipocyte differentiation via potential upregulation of tumor necrosis factor-α. Biol Trace Elem Res 74, 11–21 (2000). https://doi.org/10.1385/BTER:74:1:11

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:74:1:11

Index Entries

Navigation