Skip to main content
Log in

Production of bacterial cellulose from alternate feedstocks

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents in cluded low-solids (LS) and high-solids (HS) potato effluents, cheese whey permeate (CW), or sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did strain 10821 and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, and LS was unsuitable for production by strain 10821. However, strain 23770 produced 17% more cellulose from LS than from glucose, indicating that unamended LS could serve as a feedstock for bacterial cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krieger, J. (1990), Chem. Eng. News, 68, 35–37.

    Google Scholar 

  2. Johnson, D. C. and Winslow, A. R. (1990), Pulp Paper 64(6), 105–107.

    CAS  Google Scholar 

  3. Brown, R. M. Jr. (1989), in Cellulose: Structural and Functional Aspects, Kennedy, J. F., Phillips, G. O., and Williams, P. A., eds., Ellis Horwood, Chichester, pp. 145–151.

    Google Scholar 

  4. Okiyama, A., Motoki, M., and Yamanaka, S. (1992), Food Hydrocoll. 6, 479–487.

    Article  CAS  Google Scholar 

  5. Ross, P., Mayer, R., and Benziman, M. (1991), Microbiol. Rev. 55, 35–58.

    CAS  Google Scholar 

  6. Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., and Mitsuhashi, S. (1990), J. Mater. Sci. 25, 2997–3001.

    Article  CAS  Google Scholar 

  7. Fontana, J. D., de Souza, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Gallotti, B. J., de Souza, S. J., Narcisco, G. P., Bichara, J. H., and Farah, L. F. X. (1990), Appl. Biochem. Biotechnol. 24/25, 253–264.

    Article  Google Scholar 

  8. Farah, L. F. X. (1990), US patent 4,912,049.

  9. Yamanaka, S., Ono, E., Watanabe, K., Kusakabe, M., and Suzuki, Y. (1990), European patent application EP 0 396 344.

  10. Ring, D. F., Nashed, W., and Dow, T. (1986), US patent 4,588,400.

  11. Chatterjee, P. K. (1989), in Proceedings of the Nisshinbo International Conference on Cellulosics Utilization in the Near Future, Inagaki, H. and Phillips, G. O., eds., Elsevier Science, New York, pp. 12–17.

    Google Scholar 

  12. Shibazaki, H., Kuga, S., Onabe, F., and Usuda, M. (1993), J. Appl. Polym. Sci. 50, 965–969.

    Article  CAS  Google Scholar 

  13. Masaoka, S., Ohe, T., and Sakota, N. (1993), J. Ferment. Bioeng. 75, 18–22.

    Article  CAS  Google Scholar 

  14. Zaar, K. (1979), J. Cell Biol. 80, 773–777.

    Article  CAS  Google Scholar 

  15. Watanabe, K. and Yamanaka, S. (1995), Biosci. Biotechnol. Biochem. 59, 65–68.

    CAS  Google Scholar 

  16. Oikawa, T., Morino, T., and Ameyama, M. (1995), Biosci. Biotechnol. Biochem. 59, 1564, 1565.

    CAS  Google Scholar 

  17. Ishikawa, A., Matsuoka, M., Tsuchida, T., and Yoshinaga, F. (1995), Biosci. Biotechnol. Biochem. 59, 2259–2262.

    CAS  Google Scholar 

  18. Oikawa, T., Ohtori, T., and Ameyama, M. (1995), Biosci. Biotechnol. Biochem. 59, 331, 332.

    Article  CAS  Google Scholar 

  19. Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., and Yoshinaga, F. (1996), Biosci. Biotechnol. Biochem. 60, 575–579.

    CAS  Google Scholar 

  20. Thompson, D. N., Fox, S. L., and Bala, G. A. (2000), Appl. Biochem. Biotechnol. 84–86, 917–930.

    Article  Google Scholar 

  21. Thompson, D. N., Fox, S. L., and Bala, G. A. (2001), Appl. Biochem. Biotechnol. 91–93, 487–501.

    Article  Google Scholar 

  22. Schramm, M. and Hestrin, S. (1954), J. Gen. Microbiol. 11, 123–129.

    CAS  Google Scholar 

  23. Gherna, P. (1989), in American type Culture Collection Catalogue of Bacteria and Phages, 17th ed., American Type Culture Collection, Rockville, MD, p. 403.

    Google Scholar 

  24. Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R., eds. (1994), in Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, DC, pp. 518, 519.

    Google Scholar 

  25. Forng, E. R., Anderson, S. M., and Cannon, R. E. (1989), Appl. Environ. Microbiol. 55, 1317–1319.

    CAS  Google Scholar 

  26. De Wulf, P., Joris, K., and Vandamme, E. J. (1996), J. Chem. Technol. Biotechnol. 67, 376–380.

    Article  Google Scholar 

  27. Geyer, U., Klemm, D., and Schmauder, H.-P. (1994), Acta Biotechnol. 14, 261–266.

    Article  CAS  Google Scholar 

  28. Roukas, T. (1998), Process Biochem. 33, 805–810.

    Article  CAS  Google Scholar 

  29. Dudman, W. F. (1959), J. Gen. Microbiol. 21, 327–337.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, D.N., Hamilton, M.A. Production of bacterial cellulose from alternate feedstocks. Appl Biochem Biotechnol 91, 503–513 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:91-93:1-9:503

Index Entries

Navigation