Skip to main content
Log in

Contribution of cell-surface components to Cu2+ adsorption by Pseudomonas putida 5-x

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The contribution of various cell-surface components to Cu2+ adsorption by a Gram-negative bacterium, Pseudomonas putida 5-x, that was isolated from local electroplating effluent with a high capability to accumulate heavy metal ions was studied. The cell superficial layer had a negative effect on Cu2+ adsorption of the bacterial cells. Cu2+ adsorption capacity of the separated cell envelopes was fivefold more than that of the intact cells, owing to the liberation of more and more binding sites during the separation process. Some main components in the cell envelope, such as the peptidoglycan (PEG) layer, outer membrane, and inner membrane, provide the capability for Cu2+ adsorption. The content of the components in the cell envelope is in the order inner membrane > outer membrane > PEG layer, and their Cu2+ adsorption capacity was in the order PEG layer > outer membrane > inner membrane. The total contribution of the separated PEG layer material to Cu2+ adsorption by the cell envelope was no more than 15%, and the outer membrane and inner membrane contributed about 30–35% and 25–30%, respectively. The relatively high phospholipid content in the outer membrane may be the major reason for the higher adsorption capacity of the outer membrane to Cu2+ and, hence, such a high Cu2+ adsorption capacity of P. putida 5-x cell envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. James, A. M. (1982), Adv. Colloid Interface Sci. 15, 171–221.

    Article  CAS  Google Scholar 

  2. Doyle, R. J., Matthews, T. H., and Streips, U. N. (1980), J. Bacteriol. 143, 471–480.

    CAS  Google Scholar 

  3. Beveridge, T. J., Forsberg, C. W., and Doyle, R. J. (1982), J. Bacteriol. 150, 1438–1448.

    CAS  Google Scholar 

  4. Wong, P. K. and So, C. M. (1993), Microbiology 73, 113–131.

    CAS  Google Scholar 

  5. Kratochvil, D. and Volesky, B. (1998), Trends Biotechnol. 16, 291–301.

    Article  CAS  Google Scholar 

  6. Warren, L. A. and Ferris F. G. (1998), Environ. Sci. Technol. 32, 2331–2337.

    Article  CAS  Google Scholar 

  7. Yetis, U. E., Oezcengiz, G., Dilek, F. B., Ergen, N., Erbay, A., and Doelek, A. (1998), Water Sci. Technol. 38, 323–330.

    Article  CAS  Google Scholar 

  8. Mameri, N., Boudries, N., and Addour, L. (1999), Water Res. 33, 1347–1354.

    Article  CAS  Google Scholar 

  9. Gutnick, D. L. and Bach, H. (2000), Appl. Microbiol. Biotechnol. 54, 451–460.

    Article  CAS  Google Scholar 

  10. Remacle, J. (1993), in Biosorption of Heavy Metals, Volesky, B., ed., CRC Press, Boca Raton, FL, pp. 83–93.

    Google Scholar 

  11. Beveridge, T. J. (1986), in Biotechnology for the Mining, Metal-Refining, and Fossil Fuel Processing Industries, Ehrlich, H. L. and Holmes, D. S., eds., Wiley Interscience, New York, pp. 127–161.

    Google Scholar 

  12. McLean, R. J. and Beveridge, T. J. (1990), in Microbial Mineral Recovery, Ehrlich, H. L. and Brierley, C. L., eds., McGraw-Hill, New York, pp. 303–324.

    Google Scholar 

  13. Beveridge, T. J. and Fyfe, W. S. (1985), Can. J. Earth Sci. 22, 1893–1898.

    CAS  Google Scholar 

  14. Brierley, C. L. (1990), in Microbial Mineral Recovery, Ehrlich, H. L. and Brierley, C. L., eds., McGraw-Hill, New York, pp. 325–333.

    Google Scholar 

  15. Beveridge, T. J. and Koval, S. F. (1981), Appl. Environ. Microbiol. 42, 325–335.

    CAS  Google Scholar 

  16. Hoyle, B. and Beveridge, T. J. (1983), Appl. Environ. Microbiol. 46, 749–751.

    CAS  Google Scholar 

  17. Fall, J. and Block, J. C. (1993), FEMS Microbiol. Lett. 108, 347–352.

    Article  Google Scholar 

  18. Ferris, F. G. and Beveridge, T. J. (1984), FEMS Microbiol. Lett. 24, 43–51.

    Article  CAS  Google Scholar 

  19. Sze, K. F., Lu, Y. J., and Wong, P. K. (1996), Resour. Conser. Recycl. 18, 175–193.

    Article  Google Scholar 

  20. Wang, L., Chua, H., Wong, P. K., Lo, W. H., Yu, H. F., and Zhao, Y. G. (2000), Water Sci. Technol. 41, 241–246.

    CAS  Google Scholar 

  21. Geesey, G. G. and Jang, L. (1989), in Metal Ions and Bacteria, Doyle, T. J. and Beveridge, R. J., eds., John Wiley & Sons, New York, pp. 325–357.

    Google Scholar 

  22. Schnaitman, C. A. (1970), J. Bacteriol. 104, 890–901.

    CAS  Google Scholar 

  23. Kropinski, A. M., Lewis, B. V., and Berry, D. J. (1987), Bacteriology 169, 1960–1966.

    CAS  Google Scholar 

  24. Weidel, W. and Peltzer, H. (1964), Adv. Enzymol. 26, 193–232.

    CAS  Google Scholar 

  25. Lowry, O. H., Rosebrough, X. J., Farr, A. L., and Randall, R. J. (1951), Anal. Biochem. 59, 265–275.

    Google Scholar 

  26. Hanahan, D. J. A. (1996), Guide to Phospholipid Chemistry, Oxford University Press, New York, pp. 95–119.

    Google Scholar 

  27. Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J. (1972), J. Biol. Chem. 247, 3962–3972.

    CAS  Google Scholar 

  28. Work, E. (1957), Biochem. J. 67, 417–423.

    Google Scholar 

  29. Karkhanis, Y. D., Zeltner, J. K., and Jackson, J. J. (1978), Anal. Biochem. 85, 595–601.

    Article  CAS  Google Scholar 

  30. Hu, Z. C., Norman, J. M., Faison, B. D., and Reeres, M. E. (1996), Biotechnol. Bioeng. 51, 237–247.

    Article  Google Scholar 

  31. Sag, Y. and Kutsal, T. (1995), Chem. Eng. J. 60, 181–188.

    CAS  Google Scholar 

  32. Atkinson, B. W., Bux, F. H., and Kasan, C. (1998), Water SA 24, 129–135.

    CAS  Google Scholar 

  33. Gadd, G. M. (1988), in Biotechnology—A Comprehensive Treatise in 8 Volumes, Volume 6B, Rehm, H. J. and Reed, G., eds., VCH, Weinheim, pp. 195–231.

    Google Scholar 

  34. Yee, N. and Fein, J. (2001), Geochim. Cosmochim. Acta 65, 2037–2042.

    Article  CAS  Google Scholar 

  35. Schiewer, S. and Volesky, B. (2000), in Environmental Microbe-Metal Interactions, Derek, R. L., ed., ASM Press, Washington, DC, pp. 329–362.

    Google Scholar 

  36. Bobo, R. A. and Eagon, R. G. (1968), Can. J. Microbiol. 14, 503–513.

    Article  CAS  Google Scholar 

  37. Bhakoo, M. and Herbert, R. A. (1980), Arch. Microbiol. 126, 51–55.

    Article  CAS  Google Scholar 

  38. Rogers, S. W., Gilleland, H. E., and Eagon, R. G. (1980), Can. J. Microbiol 15, 743–748.

    Google Scholar 

  39. Wilkinson, S. G., Galbrath, L., and Lightfoot, G. A. (1969), Eur. J. Biochem. 33, 158–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, F.T. & Zhou, Q. Contribution of cell-surface components to Cu2+ adsorption by Pseudomonas putida 5-x. Appl Biochem Biotechnol 128, 33–46 (2006). https://doi.org/10.1385/ABAB:128:1:033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:128:1:033

Index Entries

Navigation