Skip to main content
Log in

Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel bacterium, Gordonia alkanivorans strain 1B, was isolated from hydrocarbon-contaminated soil. Assessment of the biodegradation of distinct organic sulfur-compounds, such as dibenzothiophene (DBT), benzothiophene (BT), DBT sulfone, and alkylated tiophenic compounds, as the sole source of sulfure was investigated. G. alkanivorans strain 1B was able to remove selectively the sulfur from DBT while keeping intact the remaining carbon-carbon structure. Orthophenyl phenol (2-hydroxybiphenyl) was the only detected metabolic product. The bacterial desulfurization activity was repressed by sulfate. G. alkanivorans straini 1B consumed 310 μM DBT after 120 h of cultivation, corresponding to a specific desulfurization rate of 1.03 μmol/(g of dry cells·h). When an equimolar mixture of DBT/BT was used as a source of sulfur in the growth medium, G. alkanivorans strain 1B assimilated both compounds in a sequential manner, with BT as the preferred source of sulfur. Only when BT concentration was decreased to a very low level was DBT utilized as the source of sulfur for bacterial growth. Thespecific desulfurization overall rates of BT and DBT obtained were 0.954 and 0.813 μmol/(g of dry cells·h), respectively. The newly isolated G. alkanivorans strain 1B has good potential for application in the biodesulfurization of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reichmuth, D. S., Hittle, J. L., Blanch, H. W., and Keasling, J. D. (2000), Biotechnol. Bioeng. 67, 72–79.

    Article  CAS  Google Scholar 

  2. Schmidt, M., Siebert, W., and Bagnall, K. W. (1973), The Chemistry of Sulphur Selenium, Tellurium and Polonium: Pergamon Texts in Inorganic Chemistry, vol. 15, Pergamon, Oxford, UK.

    Google Scholar 

  3. Monticello, D. J. (1998), ChemTech 28, 38–45.

    CAS  Google Scholar 

  4. Gray, K. A., Mrachko, G. T., and Squires, C. H. (2003), Curr. Opin. Microbiol. 6, 229–235.

    Article  CAS  Google Scholar 

  5. Tanaka, Y., Matsui, T., Konishi, J., Maruhashi, K., and Kurane, R. (2002), Appl. Microbiol. Biotechnol. 59, 325–328.

    Article  CAS  Google Scholar 

  6. Grossman, M. J., Lee, M. K., Prince, R. C., Minak-Bernero V., George, G. N., and Pickering, I. J. (2001), Appl. Environ. Microbiol. 67, 1949–1952.

    Article  CAS  Google Scholar 

  7. Ohshiro, T. and Izumi, Y. (1999), Biosci. Biotechnol. Biochem. 63, 1–9.

    Article  CAS  Google Scholar 

  8. Kirimura, K., Furuya, T., Sato, R., Ishii, Y., Kino, K., and Usami, S. (2002), Appl. Environ. Microbiol. 68, 3867–3872.

    Article  CAS  Google Scholar 

  9. Gallagher, J. R., Olson, E. S., and Stanley, D. C. (1993), FEMS Microbiol. Lett. 107, 31–36.

    Article  CAS  Google Scholar 

  10. Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E. S., and Kulpa, C. F. (1997), Microbiology 143, 2961–2973.

    Article  CAS  Google Scholar 

  11. Gilbert, S. C., Morton, J., Buchanan, S., Oldfield, C., and McRoberts, A. (1998), Microbiology 144, 2545–2553.

    CAS  Google Scholar 

  12. van Afferden, M., Schacht, S., Klein, J., and Trüper, H. G. (1990), Arch. Microbiol. 153, 324–328.

    Article  Google Scholar 

  13. Kodanna, K., Umehara, K., Shimizu, K., Nakatani, S., Minoda, Y., and Yamada, K. (1973), Agric. Biot. Chem. 37, 45–50.

    Google Scholar 

  14. Konishi, J., Onaka, T., Ishii, Y., and Susuki, M. (2000), FEMS Microbiol. Lett. 187, 151–154.

    Article  CAS  Google Scholar 

  15. Kayser, K. J., Cleveland, L., Park, H.-S., Kwak, J.-H., Kolhatkar., A., and Kibane II, J. J. (2002), Appl. Microbiol. Biotechnol. 59, 737–745.

    Article  CAS  Google Scholar 

  16. Rhee, S. K., Chang, J. H., Chang, Y. K., and Chang, H. N. (1998), Appl. Environ. Microbiol. 64, 2327–2331.

    CAS  Google Scholar 

  17. Chang, J. H., Rhee, S.-K., Chang, Y. K., and Chang, H. N. (1998), Biotechnol. Prog. 14, 851–855.

    Article  CAS  Google Scholar 

  18. Kummer, C., Schumann, P., and Stackebrandt, E. (1999), Int. J. Syst. Bacteriol. 49, 1513–1522.

    Article  CAS  Google Scholar 

  19. Ohshiro, T., Suzuki, K., and Izumi, Y. (1996), J. Ferment. Bioeng. 81, 121–124.

    Article  CAS  Google Scholar 

  20. Finkel’shtein, Z. I., Baskunov, B. P., Golovlev, E. L., and Golovleva, L. A. (1999), Microbiology 68, 154–157.

    CAS  Google Scholar 

  21. Kirimura, K., Furuya, T., Nishii, Y., Ishii, Y., Kino, K., and Usami, S. (2001), J. Biosci. Bioeng. 91, 262–266.

    Article  CAS  Google Scholar 

  22. Wang, P. and Krawiec, S. (1994), Arch. Microbiol. 161, 266–271.

    CAS  Google Scholar 

  23. Tanaka, Y., Onaka, T., Matsui, T., Maruhashi, K., and Kurane, R. (2001) Curr Microbiol. 43, 187–191.

    Article  CAS  Google Scholar 

  24. Kobayashi, M., Onaka, T., Ishii, Y., Konishi, J., Takaki, M., Okada, H., Ohta, Y., Koizumi, K., and Suzuki, M. (2000), FEMS Microbiol. Lett. 187, 123–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Gírio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, L., Salgueiro, R., Rodrigues, C. et al. Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl Biochem Biotechnol 120, 199–208 (2005). https://doi.org/10.1385/ABAB:120:3:199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:120:3:199

Index Entries

Navigation