Skip to main content
Log in

Psychostimulants, madness, memory ... and RGS proteins?

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The ingestion of psychostimulant drugs by humans imparts a profound sense of alertness and well-being. However, repeated use of these drugs in some individuals will induce a physiological state of dependence, characterized by compulsive behavior directed toward the acquisition and ingestion of the drug, at the expense of customary social obligations. Drugs of abuse and many other types of experiences share the ability to alter the morphology and density of neuronal dendrites and spines. Dopaminergic modulation of corticostriatal synaptic plasticity is necessary for these morphological changes. Changes in the density of dendritic spines on striatal neurons may underlie the development of this pathological pattern of drug-seeking behavior. Identifying proteins that regulate dopaminergic signaling are of value. A family of proteins, the regulators of G protein signaling (RGS) proteins, which regulate signaling from G protein-coupled receptors, such as dopamine and glutamate, may be important in this regard. By regulating corticostriatal synaptic plasticity, RGS proteins can influence presynaptic activity, neurotransmitter release, and postsynaptic depolarization and thereby play a key role in the development of this plasticity. Pharmacological agents that modify RGS activity in humans could be efficacious in ameliorating the dependence on psychostimulant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizman O., Brismar H., Uhlen P., et al. (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3, 226–230.

    PubMed  CAS  Google Scholar 

  • Albin R. L., Young A. B., and Penney J. B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375.

    PubMed  CAS  Google Scholar 

  • Anger T., Zhang W., and Mende U. (2004) Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo. J. Biol. Chem. 279, 3906–3915.

    PubMed  CAS  Google Scholar 

  • Aronin N., Chase K., Sagar S. M., Sharp F. R., and DiFiglia M. (1991) N-methyl-d-aspartate receptor activation in the neostriatum increases c-fos and fos-related antigens selectively in medium-sized neurons. Neuroscience 44, 409–420.

    PubMed  CAS  Google Scholar 

  • Bannon M. J., Pruetz B., Manning-Bog A. B., et al. (2002) Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers. Proc. Natl. Acad. Sci. USA. 99, 6382–6385.

    PubMed  CAS  Google Scholar 

  • Barnett J. V. and Kuczenski R. (1986) Desensitization of rat striatal dopamine-stimulated adenylate cyclase after acute amphetamine administration. J. Pharmacol. Exp. Ther. 237, 820–825.

    PubMed  CAS  Google Scholar 

  • Berke J. D., Paletzki R. F., Aronson G. J., Hyman S. E., and Gerfen C. R. (1998) A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301–5310.

    PubMed  CAS  Google Scholar 

  • Benzing T., Yaffe M. B., Arnould T., et al. (2000) 14-3-3 interacts with regulator of G protein signaling proteins and modulates their activity. J. Biol. Chem. 275, 28167–28172.

    PubMed  CAS  Google Scholar 

  • Benzing T., Kottgen M., Johnson M., et al. (2002) Interaction of 14-3-3 protein with regulator of G protein signaling 7 is dynamically regulated by TNFα. J. Biol. Chem. 277, 32954–32962.

    PubMed  CAS  Google Scholar 

  • Berman D. M., Kozasa T., and Gilman A. G. (1996) The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271, 27209–27212.

    PubMed  CAS  Google Scholar 

  • Bernstein L. S., Raminen S., Hague C., et al. (2004) RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11α signaling. J. Biol. Chem. 279, 21248–21256.

    PubMed  CAS  Google Scholar 

  • Berretta S., Robertson H. A., and Graybiel A. M. (1992) Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. J. Neurophysiol. 68, 767–777.

    PubMed  CAS  Google Scholar 

  • Bhat R. V. and Baraban J. M. (1993) Activation of transcription factor genes in the striatum by cocaine: role of both serotonin and dopamine systems. J. Pharmacol. Exp. Ther. 267, 496–505.

    PubMed  CAS  Google Scholar 

  • Bishop G. B., Cullinan W. E., Curran E., and Gutstein H. B. (2002) Abused drugs modulate RGS4 mRNA levels in rat brain: comparison between acute drug treatment and a drug challenge after chronic treatment. Neurobiol. Dis. 10, 334–343.

    PubMed  CAS  Google Scholar 

  • Bouyer J. J., Park D. H., Joh T. H., and Pickel V. M. (1984) Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res. 302, 267–275.

    PubMed  CAS  Google Scholar 

  • Bowman E. P., Campbell J. J., Druey K. M., Scheschonka A., Kehrl J. H., and Butcher E. C. (1998) Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members. J. Biol Chem. 273, 28040–28048.

    PubMed  CAS  Google Scholar 

  • Burchett S. A., Volk M. L., Bannon M. J., and Granneman J. G. (1998) Regulators of G protein signaling: Rapid changes in mRNA abundance in response to amphetamine. J. Neurochem. 70, 2216–2219.

    PubMed  CAS  Google Scholar 

  • Burchett S. A. (1999a) Regulators of G protein signaling (RGS) in rat striatum: response to acute and repeated amphetamine administration. Ph.D. Thesis, Wayne State University School of Medicine, Detroit, MI.

    Google Scholar 

  • Burchett S. A., Bannon M. J., and Granneman J. G. (1999b) RGS mRNA expression in the rat striatum: modulation by dopamine receptors and effects of repeated amphetamine administration. J. Neurochem. 72, 1529–1533.

    PubMed  CAS  Google Scholar 

  • Burchett S. A. (2000) The regulators of G protein signaling: a bestiary of protein-binding domains. J. Neurochem. 75, 1335–1351.

    PubMed  CAS  Google Scholar 

  • Burchett S. A., Flanary P., Aston C., et al. (2002) Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae. J. Biol. Chem. 277, 22156–22167.

    PubMed  CAS  Google Scholar 

  • Burchett S. A. (2003) In through the out door: nuclear localization of the regulators of G protein signaling. J. Neurochem. 87, 551–559.

    PubMed  CAS  Google Scholar 

  • Burgon P. G., Lee W. L., Nixon A. B., Peralta E. G., and Casey P. J. (2001) Phosphorylation and nuclear translocation of a regulator of G protein signaling (RGS10). J. Biol. Chem. 276, 32828–32834.

    PubMed  CAS  Google Scholar 

  • Bouhamden M., Michelhaugh S. K., Calin-Jageman I., Ahern-Djamali S., and Bannon M.J. (2004) Brain-specific RGS9-2 is localized to the nucleus via its unique proline-rich domain. Biochimica et Biophysica Acta 1691, 141–150.

    Google Scholar 

  • Cabrera-Vera T. M., Hernandez S., Earls L. R., et al. (2004) RGS9-2 modulates D2 dopamine receptor-mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proc. Natl. Acad. Sci. USA. 101, 16,339–16,344.

    CAS  Google Scholar 

  • Calabresi P., Maj R., Pisani A., Mercuri N. B., and Bernardi G. (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233.

    PubMed  CAS  Google Scholar 

  • Calabresi P., Centonze D., Gubellini P., and Bernardi G. (1999a) Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology 38, 323–326.

    PubMed  CAS  Google Scholar 

  • Calabresi P., Centonze D., Gubellini P., Marfia G. A., and Bernardi G. (1999b) Glutamate-triggered events inducing corticostriatal long-term depression. J. Neurosci. 19, 6102–6110.

    PubMed  CAS  Google Scholar 

  • Calabresi P., Gubellini P., Centonze D., et al. (2000) Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J. Neurosci. 20, 8443–8451.

    PubMed  CAS  Google Scholar 

  • Cenci M. A., and Björklund A. (1993) Transection of corticostriatal afferents reduces amphetamine- and apomorphine-induced striatal Fos expression and turning behavior in unilaterally 6-hydroxy-dopamine-lesioned rats. Eur. J. Neurosci. 5, 1062–1070.

    PubMed  CAS  Google Scholar 

  • Centonze D., Grande C., Saulle E., et al. (2003a) Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 23, 8506–8512.

    PubMed  CAS  Google Scholar 

  • Centonze D., Grande C., Usiello A., et al. (2003b) Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J. Neurosci. 23, 6245–6254.

    PubMed  CAS  Google Scholar 

  • Centonze D., Usiello A., Costa C., et al. (2004) Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J. Neurosci. 24, 8214–8222.

    PubMed  CAS  Google Scholar 

  • Cepeda C., Buchwald N. A., and Levine M. S. (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA. 90, 9576–9580.

    PubMed  CAS  Google Scholar 

  • Charpier S., Mahon S., and Deniau J. M. (1999) In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 91, 1209–1222.

    PubMed  CAS  Google Scholar 

  • Chatterjee T. K. and Fisher R. A. (2000) Cytoplasmic, nuclear and Golgi localization of RGS proteins. J. Biol. Chem. 275, 24013–24021.

    PubMed  CAS  Google Scholar 

  • Chatterjee T. K., and Fisher R. A. (2002) RGS12TS-S localizes at nuclear matrix associated subnuclear structures and represses transcription: structural requirements for subnuclear targeting and transcriptional repression. Mol. Cell Biol. 22, 4334–4345.

    PubMed  CAS  Google Scholar 

  • Chatterjee T. K., Liu Z., and Fisher R. A. (2003) Human RGS6 Gene structure, complex alternative splicing and role of the N-terminus and G-protein G-subunit-like (GGL) domain in subcellular localization of RGS6 splice variants. J. Biol. Chem. 278, 30261–30271

    PubMed  CAS  Google Scholar 

  • Chatterjee T. K. and Fisher R. A. (2003) Mild heat-and proteotoxic stress promote unique subcellular trafficking and nucleolar accumulation of RGS6 and other RGS proteins the role of the RGS domain in stress-induced trafficking of RGS proteins. J. Biol. Chem. 278, 30272–30282.

    PubMed  CAS  Google Scholar 

  • Chen H., Clark M. A., and Lambert N. A. (2004) Endogenous RGS proteins regulate presynaptic and postsynaptic function: functional expression of RGS-insensitive Galpha subunits in central nervous system neurons, in Methods Enzymol., vol. 390, Siderovski D.P., ed., Elsevier, San Diego CA, pp. 190–204.

    Google Scholar 

  • Chini B. and Parenti M. (2004) G protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J. Mol. Endocrinol. 32, 325–338.

    PubMed  CAS  Google Scholar 

  • Cladman W. and Chidiac P. (2002) Characterization and comparison of RGS2 and RGS4 as GTPase-activating proteins for m2 muscarinic receptor-stimulated G (i). Mol. Pharmacol. 62, 654–659.

    PubMed  CAS  Google Scholar 

  • Choe E. S. and McGinty J. F. (2000) N-Methyl-d-aspartate receptors and p38 mitogen-activated protein kinase are required for cAMP-dependent cyclase response element binding protein and Elk-1 phosphorylation in the striatum. Neuroscience 101, 607–617.

    PubMed  CAS  Google Scholar 

  • Choe E. S. and McGinty J. F. (2001) Cyclic AMP and mitogen-activated protein kinases are required for glutamate-dependent cyclic AMP response element binding protein and Elk-1 phosphorylation in the dorsal striatum in vivo. J. Neurochem. 76, 401–412.

    PubMed  CAS  Google Scholar 

  • Choe E. S. and Wang J. Q. (2001) Group I metabotropic glutamate receptors control phosphorylation of CREB, Elk-1 and ERK via a CaMKII-dependent pathway in rat striatum. Neurosci. Lett. 313, 129–132.

    PubMed  CAS  Google Scholar 

  • Choe E. S. and Wang J. Q. (2002) CaMKII regulates amphetamine-induced ERK1/2 phosphorylation in striatal neurons. Neuroreport 13, 1013–1016.

    PubMed  CAS  Google Scholar 

  • Choe E. S., Chung K. T., Mao L., and Wang J. Q. (2002) Amphetamine increases phosphorylation of extracellular signal-regulated kinase and transcription factors in the rat striatum via group I metabotropic glutamate receptors. Neuropsy-chopharmacology 27, 565–575.

    CAS  Google Scholar 

  • Cho H., Kozasa T., Takekoshi K., De Gunzburg J., and Kehrl J. H. (2000) RGS14, a GTPase-activating protein for Gialpha, attenuates Gialpha- and G13alpha-mediated signaling pathways. Mol. Pharmacol. 58, 569–576.

    PubMed  CAS  Google Scholar 

  • Cho H., Kim D. U., and Kehrl J. H. (2005) RGS14 is a centrosomal and nuclear-cytoplasmic shuttling protein that traffics to PML nuclear bodies following heat shock. J. Biol. Chem. 205, 805–814.

    Google Scholar 

  • Cole A. J., Bhat R. V., Patt C., Worley P. F., and Baraban J. M. (1992) D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J. Neurochem. 58, 1420–1426.

    PubMed  CAS  Google Scholar 

  • Cunningham M. L., Waldo G. L., Hollinger S., Hepler J. R., and Harden T. K. (2001) Protein kinase C phosphorylates RGS2 and modulates its capacity for negative regulation of Galpha 11 signaling. J. Biol. Chem. 276, 5438–5444.

    PubMed  CAS  Google Scholar 

  • Das S., Grunert M., Williams L., and Vincent S. R. (1997) NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c-fos in striatal neurons in primary culture. Synapse 25, 227–233.

    PubMed  CAS  Google Scholar 

  • Davare M. A., Avdonin V., Hall D. D., et al. (2001) A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293, 98–101.

    PubMed  CAS  Google Scholar 

  • Deisseroth K., Mermelstein P. G., Xia H., and Tsien R. W. (2003) Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365.

    PubMed  CAS  Google Scholar 

  • Di Chiara G., Morelli M., and Consolo S. (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci. 17, 228–233.

    PubMed  Google Scholar 

  • Doupnik C. A., Davidson N., Lester H. A., and Kofuji P. (1997) RGS proteins reconstitute the rapid gating kinetics of G-activated inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. USA 94, 10461–10466.

    PubMed  CAS  Google Scholar 

  • Dowal L., Elliott J., Popov S., Wilkie T. M., and Scarlata S. (2001) Determination of the contact energies between a regulator of G protein signaling and G protein subunits and phospholipase C beta 1. Biochemistry 16, 414–421.

    Google Scholar 

  • Druey K. M., Sullivan B. M., Brown D., et al. (1998) Expression of a GTPase-deficient Giα2 results in translocation of cytoplasmic RGS4 to the plasma membrane. J. Biol. Chem. 273, 18405–18410.

    PubMed  CAS  Google Scholar 

  • Drevets W. C., Gautier C., Price J. C., et al. (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol. Psychiatry. 49, 81–96.

    PubMed  CAS  Google Scholar 

  • Dudman J. T., Eaton M. E., Rajadhyaksha A., et al. (2003) Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J. Neurochem. 87, 922–934.

    PubMed  CAS  Google Scholar 

  • Dulin N. O., Sorokin A., Reed E., Elliot S., Kehrl J. H., and Dunn M. J. (1999) RGS3 inhibits G protein-mediated signaling via translocation to the membrane and binding to GαII. Mol. Cell Biol. 19, 714–723.

    PubMed  CAS  Google Scholar 

  • Everitt B. J. and Wolf M. E. (2002) Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312–3320.

    PubMed  CAS  Google Scholar 

  • Fiorentini C., Gardoni F., Spano P., Di Luca M., and Missale C. (2002) Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-d-aspartate receptors. J. Biol. Chem. 278, 20196–20202.

    Google Scholar 

  • Fivaz M. and Meyer T. (2003) Specific localization and timing in neuronal signal transduction mediated by protein-lipid interactions. Neuron 40, 319–330.

    PubMed  CAS  Google Scholar 

  • Garzón J., Rodriguez-Muñoz M., López-Fando A., and Sánchez-Blázquez P. (2005) Activation of Mu-opioid receptors transfers control of G-subunits to the regulator of G-protein signaling RGS9-2. Role in receptor desensitization. J. Biol. Chem. 280, 8951–8960.

    PubMed  Google Scholar 

  • Gerdeman G. L., Partridge J. G., Lupica C. R., and Lovinger D. M. (2003) It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 26, 184–192.

    PubMed  CAS  Google Scholar 

  • Gerfen C. R., Engber T. M., Mahan L. C., et al. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.

    PubMed  CAS  Google Scholar 

  • Gerfen C. R., Keefe K. A., and Gauda E. B. (1995) D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J. Neurosci. 15, 8167–8176.

    PubMed  CAS  Google Scholar 

  • Geurts M., Hermans E., and Malateaux J.-M. (2002) Opposite modulation of regulators of G protein signaling-2 (RGS2) and RGS4 expression by dopamine receptors in the rat striatum. Neurosci. Lett. 333, 146–150.

    PubMed  CAS  Google Scholar 

  • Geurts M., Maloteaux J. M., and Hermans E. (2003) Altered expression of regulators of G-protein signaling (RGS) mRNAs in the striatum of rats undergoing dopamine depletion. Biochem. Pharmacol. 66, 1163–1170.

    PubMed  CAS  Google Scholar 

  • Gold S. J, Ni Y. G, Dohlman H. G., and Nestler E. J. (1997) Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci. 17, 8024–8037.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Nicolini V. and McGinty J. F. (2002) Gene expression profile from the striatum of amphetamine-treated rats: a cDNA array and in situ hybridization and histochemical study. Gene Expression Patterns 1, 193–198.

    PubMed  CAS  Google Scholar 

  • Granneman J. G., Zhai Y., Zhengxian Z., et al. (1998) Molecular characterization of human and rat RGS 9L, a novel splice variant enriched in dopamine target regions, and chromosomal localization of the RGS 9 gene. Mol. Pharmacol. 54, 687–694.

    PubMed  CAS  Google Scholar 

  • Graybiel A. M., Moratalla R., and Robertson H. A. (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87, 6912–6916.

    PubMed  CAS  Google Scholar 

  • Graybiel A. M. (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol. 5, 733–741.

    PubMed  CAS  Google Scholar 

  • Greengard P. (2001) The neurobiology of slow synaptic transmission. Science 294, 1024–1030.

    PubMed  CAS  Google Scholar 

  • Grewal S. S., Fass D. M., Yao H., Ellig C. L., Goodman R. H., and Stork P. J. (2000) Calcium and cAMP signals differentially regulate cAMP-responsive element-binding protein function via a Rap1-extracellular signal-regulated kinase pathway. J. Biol. Chem. 275, 34433–34441.

    PubMed  CAS  Google Scholar 

  • Gubellini P., Saulle E., Centonze D., et al. (2003) Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology 44, 8–16.

    PubMed  CAS  Google Scholar 

  • Hardingham G. E., Arnold F. J., and Bading H. (2001) A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat. Neurosci. 4, 565–566.

    PubMed  CAS  Google Scholar 

  • Harkins A. B., Cahill A. L., Powers J. F., Tischler A. S., and Fox A. P. (2004) Deletion of the synaptic protein interaction site of the N-type (CaV2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells. Proc. Natl. Acad. Sci. USA 101, 15219–15224.

    PubMed  CAS  Google Scholar 

  • Harris D. and Batki S. L. (2000) Stimulant psychosis: symptom profile and acute clinical course. Am. J. Addict. 9, 28–37.

    PubMed  CAS  Google Scholar 

  • Hernández-López S., Bargas J., Surmeier D. J., Reyes A., and Galarraga E. (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J. Neurosci. 17, 3334–3342.

    PubMed  Google Scholar 

  • Hernández-López S., Tkatch T., Perez-Garci E., et al. (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC [β] 1-IP3-calcineurin-signaling cascade. J. Neurosci. 20, 8987–8995.

    PubMed  Google Scholar 

  • Heximer S. P., Watson N., Linder M. E., Blumer K. J., and Hepler J. R. (1997) RGS2/GOS8 is a selective inhibitor of Gαq function. Proc. Natl. Acad. Sci. USA 94, 14389–14393.

    PubMed  CAS  Google Scholar 

  • Heximer S. P., Srinivasa S. P., Bernstein L. S., et al. (1999) G protein selectivity is a determinant of RGS2 function. J. Biol. Chem. 274, 34253–34259.

    PubMed  CAS  Google Scholar 

  • Heximer S. P., Lim H., Bernard J. L., and Blumer K. J. (2001) Mechanisms governing subcellular localization and function of human RGS2. J. Biol. Chem. 276, 14195–14203.

    PubMed  CAS  Google Scholar 

  • Hollinger S., Taylor J. B., Goldman E. H., and Hepler J. R. (2001) RGS14 is a bifunctional regulator of Galphai/o activity that exists in multiple populations in brain. J. Neurochem. 79, 941–949.

    PubMed  CAS  Google Scholar 

  • Hooks S. B., Waldo G. L., Corbitt J., Bodor E. T., Krumins A. M., and Harden T. K. (2003) RGS6, RGS7, RGS9, and RGS11 stimulate GTPase activity of Gi family G-proteins with differential selectivity and maximal activity. J. Biol. Chem. 278, 10087–10093.

    PubMed  CAS  Google Scholar 

  • Hu G. and Wensel T. G. (2002) R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Proc. Natl. Acad. Sci. USA 99, 9755–9760.

    PubMed  CAS  Google Scholar 

  • Huang C.-L., Slesiger P. A., Casey P. J., Jan Y. N., and Jan L. Y. (1995) Evidence that direct binding of G beta gamma is important for channel activation. Neuron 15, 1133–1143.

    PubMed  CAS  Google Scholar 

  • Hunt R. A., Edris W., Chanda P. K., Nieuwenhuijsen B., and Young K. H. (2003) Snapin interacts with the N-terminus of regulator of G protein signaling 7. Biochem. Biophys. Res. Commun. 303, 594–599.

    PubMed  CAS  Google Scholar 

  • Hunt T. W., Fields T. A., Casey P. J., and Peralta E. G. (1996) RGS10 is a selective activator of G alpha i GTPase activity. Nature 12, 175–177.

    Google Scholar 

  • Iadarola M. J., Chuang E. J., Yeung C-L., et al. (1993) Induction and suppression of proto-oncogenes in rat striatum after single or multiple treatments with cocaine or GBR-12909, in NIDA Research Monographs Series, vol. 125, Grzanna, R., and Brown, R.M., eds., U. S. Government Printing Office, Washington, D.C., pp. 181–211.

    Google Scholar 

  • Ingi T., Krumins A. M., Chidiac P., et al. (1998) Dynamic regulation of RGS2 suggests a novel mechanism in G protein signaling and neuronal plasticity. J. Neurosci. 18, 7178–7188.

    PubMed  CAS  Google Scholar 

  • Inoue A. and Okabe S. (2003) The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function. Curr. Opin. Neurobiol. 13, 332–340.

    PubMed  CAS  Google Scholar 

  • Ishii M., Fujita S., Yamada M., Hosaka Y., and Kurachi Y. (2005) PtdIns (3, 4, 5) P3 and Ca2+/calmodulin competitively bind to the RGS domain of RGS4 and reciprocally regulate its action. Biochem. J. 385, 65–73.

    PubMed  CAS  Google Scholar 

  • Ito R., Dalley J. W., Robbins T. W., and Everitt B. J. (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22, 6247–6253.

    PubMed  CAS  Google Scholar 

  • Jiang M., Spicher K., Boulay G., Wang Y., and Birnbaumer L. (2001) Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc. Natl. Acad. Sci. USA 98, 3577–3582.

    PubMed  CAS  Google Scholar 

  • Kammermeier P. J. and Ikeda S. R. (1999) Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 22, 819–829.

    PubMed  CAS  Google Scholar 

  • Kebabian J. W. and Calne D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.

    PubMed  CAS  Google Scholar 

  • Kehrl J. H., Srikumar D., Harrison K., Wilson G. L., and Shi C. S. (2002) Additional 5′ exons in the RGS3 locus generate multiple mRNA transcripts, one of which accounts for the origin of human PDZ-RGS3. Genomics 79, 860–868.

    PubMed  CAS  Google Scholar 

  • Koob G. F. (1992) Neural mechanisms of drug reinforcement. Ann. NY Acad. Sci. 654, 171–191.

    PubMed  CAS  Google Scholar 

  • Koob G. F. and Le Moal M. (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129.

    PubMed  CAS  Google Scholar 

  • Konradi C., Leveque J. C., and Hyman S. E. (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on post-synaptic NMDA receptors and calcium. J. Neurosci. 16, 4231–4239.

    PubMed  CAS  Google Scholar 

  • Krumins A. M., Barker S. A., Huang C., et al. (2004) Differentially regulated expression of endogenous RGS4 and RGS7. J. Biol. Chem. 279, 2593–2599.

    PubMed  CAS  Google Scholar 

  • Kutateladze T. G., Capelluto D. G., Ferguson C. G., et al. (2004) Multivalent mechanism of membrane insertion by the FYVE domain. J. Biol. Chem. 279, 3050–3057.

    PubMed  CAS  Google Scholar 

  • Lavine N., Ethier N., Oak J. N., et al. (2002) G protein-coupled receptors form stable complexes with in wardly rectifying potassium channels and adenylyl cyclase. J. Biol. Chem. 277, 46010–4619.

    PubMed  CAS  Google Scholar 

  • Lee K.-W., Hong J.-H., Choi I. Y., et al. (2002) Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J. Neurosci. 22, 7931–7940.

    PubMed  CAS  Google Scholar 

  • Li Y., Kolb B. and Robinson T. E. (2003) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology 28, 1082–1085.

    PubMed  CAS  Google Scholar 

  • Liu Z. and Fisher R. A. (2004) RGS6 interacts with DMAP1 and DNMT1 and inhibits DMAP1 transcriptional repressor activity. J. Biol. Chem. 279, 14120–14128.

    PubMed  CAS  Google Scholar 

  • Lodowski D. T., Pitcher J. A., Capel W. D., Lefkowitz R. J., and Tesmer J. J. (2003) Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 300, 1256–1262.

    PubMed  CAS  Google Scholar 

  • Lu Q., Sun E. E., Klein R. S., and Flanagan J. G. (2001) Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79.

    PubMed  CAS  Google Scholar 

  • Luo X., Popov S., Bera A. K., Wilkie T. M., and Muallem S. (2001) RGS proteins provide biochemical control of agonist-evoked [Ca2+]i oscillations. Mol. Cell 7, 651–660.

    PubMed  CAS  Google Scholar 

  • Lüscher C., Nicoll R. A., Malenka R. C., and Muller D. (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545–550.

    PubMed  Google Scholar 

  • Mao L. and Wang J. Q. (2002) Activation of metabotropic glutamate receptors mediates up-regulation of transcription factor mRNA expression in rat striatum induced by acute administration of amphetamine. Brain Res. 924, 167–175.

    PubMed  CAS  Google Scholar 

  • Martemyanov K. A. and Arshavsky V. Y. (2002) Non-catalytic domains of RGS9-1-Gβ5L play a decisive role in establishing its substrate specificity. J. Biol. Chem. 277, 32843–32848.

    PubMed  CAS  Google Scholar 

  • Martemyanov K. A., Hopp J. A., and Arshavsky V. Y. (2003a) Specificity of G protein-RGS protein recognition is regulated by affinity adapters. Neuron 38, 857–862.

    PubMed  CAS  Google Scholar 

  • Martemyanov K. A., Lishko P. V., Calero N., et al. (2003b) The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo. J. Neurosci. 23, 10175–10181.

    PubMed  CAS  Google Scholar 

  • Martemyanov K. A., Yoo P. J., Skiba N. P., and Arshavsky V. Y. (2005) R7BP-A novel neuronal protein interacting with RGS proteins of the R7 family. J. Biol. Chem. 280, 5133–5136.

    PubMed  CAS  Google Scholar 

  • Masuho I., Itoh M., Itoh H., and Saitoh O. (2004) The mechanism of membrane translocation of regulator of G protein signaling (RGS) 8 induced by G-expression. J. Neurochem. 88, 161–168.

    PubMed  CAS  Google Scholar 

  • Mazzucchelli C., Vantaggiato C., Ciamei A., et al. (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 30, 807–820.

    Google Scholar 

  • McLaughlin S., Wang J., Gambhir A., and Murray D. (2002) PIP2 and proteins: Interactions, oraganization and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175.

    PubMed  CAS  Google Scholar 

  • Melliti K., Meza U., Fisher R., and Adams B. (1999) Regulators of G protein signaling attenuate the G protein-mediated inhibition of N-type Ca2+ channels. J. Gen. Physiol. 113, 97–109.

    PubMed  CAS  Google Scholar 

  • Melliti K., Meza U., and Adams B. A. (2001) RGS2 blocks slow muscarinic inhibition of N-type Ca2+ channels reconstituted in a human cell line. J. Physiol. 532.2, 337–347.

    Google Scholar 

  • Miserendino M. J. and Nestler E. J. (1995) Behavioral sensitization to cocaine: modulation by the cyclic AMP system in the nucleus accumbens. Brain Res. 674, 299–306.

    PubMed  CAS  Google Scholar 

  • Mitchell J. and Vierkant A. D. (1991) Delusions and hallucinations of cocaine abusers and paranoid schizophrenics: a comparative study. J. Psychol. 125, 301–310.

    PubMed  CAS  Google Scholar 

  • Moratalla R., Robertson H. A., and Graybiel A. M. (1992) Dynamic regulation of NGFIA (zif268, egr1) gene expression in the striatum. J. Neurosci. 12, 2609–2622.

    PubMed  CAS  Google Scholar 

  • Moratalla R., Xu M., Tonegawa S., and Graybiel A. M. (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc. Natl. Acad. Sci. USA 10, 14928–14933.

    Google Scholar 

  • Murray D. and Honig B. (2002) Electrostatic control of the membrane targeting of C2 domains. Mol. Cell 9, 145–154.

    PubMed  CAS  Google Scholar 

  • Muslin A. J. and Xing H. (2000) 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal. 12, 703–709.

    PubMed  CAS  Google Scholar 

  • Nair K. S., Balasubramanian N., and Slepak V. Z. (2002) Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors. Curr. Biol. 12, 421–425.

    PubMed  CAS  Google Scholar 

  • Nishizuka M., Honda K., Tsuchiya T., Nishihara T., and Imagawa M. (2001) RGS2 promotes adipocyte differentiation in the presence of the peroxisome proliferators-activated receptor. J. Biol. Chem. 276, 29625–29627.

    PubMed  CAS  Google Scholar 

  • Niu J., Scheschonka A., Druey K. M., et al. (2002) RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS domain. Biochem. J. 365, 6777–6784.

    Google Scholar 

  • Packard M. G. and Knowlton B. J. (2002) Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593.

    PubMed  CAS  Google Scholar 

  • Parent A. and Hazrati L.-N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 20, 91–127.

    PubMed  CAS  Google Scholar 

  • Pawson T. and Scott J. D. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080.

    PubMed  CAS  Google Scholar 

  • Pedram A., Razandi M., Kehrl J., and Levin E. R. (2000) Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J. Biol. Chem. 275, 7365–7372.

    PubMed  CAS  Google Scholar 

  • Pérez-Garci E., Bargas J., and Galarraga E. (2003) The role of Ca2+ channels in the repetitive firing of striatal projection neurons. Neuroreport 14, 1253–1256.

    PubMed  Google Scholar 

  • Ponting C. P. and Bork P. (1996) Pleckstrin’s repeat performance: a novel domain in G-protein signaling? Trends Biochem. Sci. 21, 245–246.

    PubMed  CAS  Google Scholar 

  • Popov S. G., Krishna U. M., Falck J. R., and Wilkie T. M. (2000) Ca2+/Calmodulin reverse phosphatidylinositol 3, 4, 5-triphosphate-dependent inhibition of regulators of G protein-signaling GTPase activating protein activity. J. Biol. Chem. 275, 18962–18968.

    PubMed  CAS  Google Scholar 

  • Rajadhyaksha A., Barczak A., Macias W., Leveque J. C., Lewis S. E., and Konradi C. (1999) L-Type Ca (2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J. Neurosci. 19, 6348–6359.

    PubMed  CAS  Google Scholar 

  • Ravasz E., Somera A. L., Mongru D. A., Oltvai Z. N., and Barabasi A. L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555.

    PubMed  CAS  Google Scholar 

  • Reynolds J. N., Hyland B. I., and Wickens J. R. (2001) A cellular mechanism of reward-related learning. Nature 413, 67–70.

    PubMed  CAS  Google Scholar 

  • Roberts-Lewis J. M., Roseboom P. H., Iwaniec L. M., and Gnegy M. E. (1986) Differential down-regulation of D1-stimulated adenylate cyclase activity in rat forebrain after in vivo amphetamine treatments. J. Neurosci. 6, 2245–2251.

    PubMed  CAS  Google Scholar 

  • Robinson T. E. and Kolb B. (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47, 33–46.

    PubMed  CAS  Google Scholar 

  • Rose J. J., Taylor J. B., Shi J., Cockett M. I., Jones P. G., and Hepler J. R. (2000) RGS7 is palmitoylated and exists as biochemically distinct forms. J. Neurochem. 75, 2103–2112.

    PubMed  CAS  Google Scholar 

  • Roseboom P. H. and Gnegy M. E. (1989) Acute in vivo amphetamine produces homologous desensitization of dopamine-stimulated adenylyl cyclase activities and decreases agonist binding to the D1 site. Mol. Pharamacol. 35, 139–147.

    CAS  Google Scholar 

  • Roseboom P. H., Hewlett G. H., and Gnegy M. E. (1990) Repeated amphetamine administration alters the interaction between D1-stimulated adenylyl cyclase activity and calmodulin. J. Pharamacol. Exp. Ther. 255, 197–203.

    CAS  Google Scholar 

  • Roy A. A., Lemberg K. E., and Chidiac P. (2003) Recruitment of RGS2 and RGS4 to the plasma membrane by G proteins and receptors reflect functional interactions. Mol. Pharmacol. 64, 587–593.

    PubMed  CAS  Google Scholar 

  • Saitoh O., Murata Y., Odagiri M., et al. (2002) Alternative splicing of RGS8 gene determines inhibitory function of receptor type-specific Gq signaling. Proc. Natl. Acad. Sci. USA 99, 10138–10143.

    PubMed  CAS  Google Scholar 

  • Salim S., Sinnarajah S., Kehrl J. H., and Dessauer C. W. (2003) Identification of RGS2 and type V adenylyl cyclase interaction sites. J. Biol. Chem. 278, 15842–15849.

    PubMed  CAS  Google Scholar 

  • Saugstad J. A., Marino M. J., Folk J. A., Hepler J. R., and Conn P. J. (1998) RGS4 inhibits signaling by group 1 metabotropic glutamate receptors. J. Neurosci. 18, 905–913.

    PubMed  CAS  Google Scholar 

  • Schiff M., Siderovski D. P., Jordan J. D., et al. (2000) Tyrosine-kinase dependent recruitment of RGS12 to the N-type calcium channel. Nature 408, 723–727.

    PubMed  CAS  Google Scholar 

  • Self D. W., Genova L. M., Hope BT., Barnhart W. J., Spencer J. J., and Nestler E. J. (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J. Neurosci. 18, 1848–1859.

    PubMed  CAS  Google Scholar 

  • Shen K., Teruel M. N., Connor J. H., Shenolikar S., and Meyer T. (2000) Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nat. Neurosci. 3, 881–886.

    PubMed  CAS  Google Scholar 

  • Shi C. S., Lee S. B., Sinnarajah S., Dessauer C. W., Rhea S. G., and Kehrl J. H. (2001) Regulator of G-protein signaling 3 (RGS3) inhibits Gbeta 1 gamma 2-induced inositol phosphate production, mitogen-activated protein kinase activation, and Akt activation. J. Biol. Chem. 276, 24293–24300.

    PubMed  CAS  Google Scholar 

  • Sierra D. A., Popov S., and Wilkie T. M. (2000) Regulators of G-protein signaling in receptor complexes. Trends Cardiovasc. Med. 10, 263–268.

    PubMed  CAS  Google Scholar 

  • Sinnarajah S., Dessauer C. W., Srikumar D., et al. (2001) RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature 409, 1051–1055.

    PubMed  CAS  Google Scholar 

  • Song L., De Sarno P., and Jope R. S. (1999) Muscarinic receptor stimulation increases regulators of G protein signaling 2 mRNA levels through a protein kinase C mechanism. J. Biol. Chem. 274, 29689–29693.

    PubMed  CAS  Google Scholar 

  • Song L., Zmijewski J. W., and Jope R. S. (2001) RGS2: Regulation of expression and nuclear localization. Biochem. Biophys. Res. Comm. 283, 102–106.

    PubMed  CAS  Google Scholar 

  • Snow B. E., Hall R. A., Krumins A. M., et al. (1998) GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain. J. Biol. Chem. 273, 17749–17755.

    PubMed  CAS  Google Scholar 

  • Snyder G. L., Fienberg A. A., Huganir R. L., and Greengard P. (1998) A dopamine/D1 receptor/ protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulate dephosphorylation of the NMDA receptor. J. Neurosci. 18, 10297–10303.

    PubMed  CAS  Google Scholar 

  • Stahelin R. V., Burian A., Bruzik K. S., Murray D., and Cho W. (2003) Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox. J. Biol. Chem. 278, 14469–14479.

    PubMed  CAS  Google Scholar 

  • Sung K. W., Choi S., and Lovinger D. M. (2001) Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J. Neurophysiol. 86, 2405–2412.

    PubMed  CAS  Google Scholar 

  • Surmeier D. J., Bargas J., Hemmings H. C., Jr., Nairn A. C., and Greengard P. (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14, 385–397.

    PubMed  CAS  Google Scholar 

  • Surmeier D. J., Song W. J., and Yan Z. (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591.

    PubMed  CAS  Google Scholar 

  • Tang W. X., Fasulo W. H., Mash D. C., and Hemby S. E. (2003) Molecular profiling of midbrain dopamine regions in cocaine overdose victims. J. Neurochem. 85, 911–924.

    PubMed  CAS  Google Scholar 

  • Taymans J. M., Wintmolders C., Te Riele P., Jurzak M., Groenewegen H. J., and Leysen J. E. (2002) Detailed localization of regulator of G protein signaling 2 messenger ribonucleic acid and protein in brain. Neuroscience 114, 39–53.

    PubMed  CAS  Google Scholar 

  • Taymans J.-M., Leysen J. E., and Xavier L. (2003) Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS2 and RGS4 functions. J. Neurochem. 84, 1118–1127.

    PubMed  CAS  Google Scholar 

  • Taymans J.-M., Kia H. K., Cruz C., Leysen J., and Langlois X. (2004) Dopamine receptor-mediated regulation of RGS2 and RGS4 mRNA differentially depends on ascending dopamine projections and time. European J. Pharmacol. 19, 2249–2260.

    Google Scholar 

  • Taymans J.-M., Cruz C., Lesage A., Leysen J. E., and Langlois X. (2005) MK-801 alters RGS2 levels and adenylyl cyclase sensitivity in the rat striatum. Neuroreport 6, 159–162.

    Google Scholar 

  • Teruel M. N. and Meyer T. (2000) Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103, 181–184.

    PubMed  CAS  Google Scholar 

  • Terwilliger R. Z., Beitner-Johnson D., Sevarino K. A., Crain S. M., and Nestler E. J. (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548, 100–110.

    PubMed  CAS  Google Scholar 

  • Tong J., Ross B. M., Schmunk G. A., et al. (2003) Decreased striatal dopamine D1 receptor-stimulated adenylyl cyclase activity in human methamphetamine users. Am. J. Psychiatry. 160, 896–903.

    PubMed  Google Scholar 

  • Tosetti P., Parente V., Taglietti V., Dunlap K., and Toselli M. (2003) Chick RGS2L demonstrates concentration-dependent selectivity for pertussis toxin-sensitive and-insensitive pathways that inhibit L-type Ca2+ channels. J. Physiol. 15, 157–169.

    Google Scholar 

  • Ujike H. (2002) Stimulant-induced psychosis and schizophrenia: the role of sensitization. Curr. Psychiatry Rep. 4, 177–184.

    PubMed  Google Scholar 

  • Unterwald E. M., Fillmore J., and Kreek M. J. (1996) Chronic repeated cocaine administration increases dopamine D1 receptor-mediated signal transduction. Eur. J. Pharmacol. 318, 31–35.

    PubMed  CAS  Google Scholar 

  • Valjent E., Corvol J. C., Pages C., Bessen M. J., Maldonado R., and Caboche J. (2000) Involvement of the extracellular signal-related kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701–8709.

    PubMed  CAS  Google Scholar 

  • Vanderschuren L. J. and Everitt B. J. (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305, 1017–1019.

    PubMed  CAS  Google Scholar 

  • Volkow N. D., Wang G. J., Fowler J. S., et al. (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386, 830–833.

    PubMed  CAS  Google Scholar 

  • Wang X., Zeng W., Soyombo A. A., et al. (2005) Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G protein-coupled receptors. Nat. Cell. Biol. 7, 405–411.

    PubMed  CAS  Google Scholar 

  • Wong H. C., Mao J., Nguyen J. T., et al. (2000) Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat. Struct. Biol. 7, 1178–1184.

    PubMed  CAS  Google Scholar 

  • Worsley J. N., Moszczynska A., Falardeau P., et al. (2000) Dopamine D1 receptor protein is elevated in nucleus accumbens of human, chronic methamphetamine users. Mol. Psychiatry. 5, 664–672.

    PubMed  CAS  Google Scholar 

  • Xu X., Zeng W., Popov S., et al. (1999) RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274, 3549–3556.

    PubMed  CAS  Google Scholar 

  • Yan Z., Song W. J., and Surmeier J. (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J. Neurophysiol. 77, 1003–10015.

    PubMed  CAS  Google Scholar 

  • Yan Z., Feng J., Fienberg A. A., and Greengard P. (1999) D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc. Natl. Acad. Sci. USA 96, 11607–11612.

    PubMed  CAS  Google Scholar 

  • Yuferov V., Kroslak T., Laforge K. S., Zhou Y., Ho A., and Kreek J. (2003) Differential gene expression in the rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse 48, 157–169.

    PubMed  CAS  Google Scholar 

  • Yui K., Goto K., Ikemoto S., et al. (1999) Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization. Mol. Psychiatry 4, 512–523.

    PubMed  CAS  Google Scholar 

  • Zeng W., Xu X., Popov S., et al. (1998) The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol. Chem. 25, 34687–34690.

    Google Scholar 

  • Zhang J. H., Barr V. A., Mo Y., Rojkova A. M., Liu S., and Simonds W. F. (2001) Nuclear localization of G protein beta 5 and regulator of G protein signaling 7 in neurons and brain. J. Biol. Chem. 276, 10284–10289.

    PubMed  CAS  Google Scholar 

  • Zhang L., Lou D., Jiao H., et al. (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J. Neurosci. 24, 3344–3354.

    PubMed  CAS  Google Scholar 

  • Zhuang X., Belluscio L., and Hen R. (2000) Golfα mediates dopamine D1 receptor signaling. J. Neurosci. RC91, 1–5.

    Google Scholar 

  • Zmijewski J. W., Song L., Harkins L., Cobbs C. S., and Jope R. S. (2001) Second messengers regulate RGS2 expression, which is targeted to the nucleus. Biochim. Biophys. Acta. 1541, 201–211.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Burchett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchett, S.A. Psychostimulants, madness, memory ... and RGS proteins?. Neuromol Med 7, 101–127 (2005). https://doi.org/10.1385/NMM:7:1-2:101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:7:1-2:101

Index Entries

Navigation